2,708 research outputs found
High efficiency multifrequency feed
Antenna systems and particularly compact and simple antenna feeds which can transmit and receive simultaneously in at least three frequency bands, each with high efficiency and polarization diversity are described. The feed system is applicable for frequency bands having nominal frequency bands with the ratio 1:4:6. By way of example, satellite communications telemetry bands operate in frequency bands 0.8 - 1.0 GHz, 3.7 - 4.2 GHz and 5.9 - 6.4 GHz. In addition, the antenna system of the invention has monopulse capability for reception with circular or diverse polarization at frequency band 1
Chaotic itinerancy and power-law residence time distribution in stochastic dynamical system
To study a chaotic itinerant motion among varieties of ordered states, we
propose a stochastic model based on the mechanism of chaotic itinerancy. The
model consists of a random walk on a half-line, and a Markov chain with a
transition probability matrix. To investigate the stability of attractor ruins
in the model, we analyze the residence time distribution of orbits at attractor
ruins. We show that the residence time distribution averaged by all attractor
ruins is given by the superposition of (truncated) power-law distributions, if
a basin of attraction for each attractor ruin has zero measure. To make sure of
this result, we carry out a computer simulation for models showing chaotic
itinerancy. We also discuss the fact that chaotic itinerancy does not occur in
coupled Milnor attractor systems if the transition probability among attractor
ruins can be represented as a Markov chain.Comment: 6 pages, 10 figure
Making sense of internal logic Theory and a case study
Motivated by the interf aciology proposed by Otto Rossler, we have attempted to construct a framework of internal logic of the mind and brain. We propose a functional equation as an abstract form representing mental processes. We consider a method by which such internal logic can be interpreted and understood by an (external) observer. For this purpose, we propose a theory for cognitive experiments. Applying this theory to simple deductive inference processes exhibited by animal subjects in an experimental setting, with the assumption that syllogism is expressed as a composite mapping corresponding to the product operation of two implications A-t Band B -t C, an interpretation of the neural activity associated with the behavior in these experiments is obtained. This theory is consistent with the internal description hypothesized by Rob Rosen
A transceiver module of the Mu radar
The transceiver (TR) module of a middle and upper atmospheric radar is described. The TR module used in the radar is mainly composed of two units: a mixer (MIX unit) and a power amplifier (PA unit). The former generates the RF wave for transmission and converts the received echo to the IF signal. A 41.5-MHz local signal fed to mixers passes through a digitally controlled 8-bit phase shifter which can change its value up to 1,000 times in a second, so that the MU radar has the ability to steer its antenna direction quickly and flexibly. The MIX unit also contains a buffer amplifier and a gate for the transmitting signal and preamplifier for the received one whose noise figure is less than 5 dB. The PA unit amplifies the RF signal supplied from the MIX unit up to 63.7 dBm (2350 W), and feeds it to the crossed Yagi antenna
Many-Polaron Effects in the Holstein Model
We derive an effective polaronic interaction Hamiltonian, {\it exact to
second order in perturbation}, for the spinless one-dimensional Holstein model.
The small parameter is given by the ratio of the hopping term () to the
polaronic energy () in all the region of validity for our
perturbation; however, the exception being the regime of extreme
anti-adiabaticity () and small electron-phonon coupling () where the small parameter is . We map our polaronic
Hamiltonian onto a next-to-nearest-neighbor interaction anisotropic Heisenberg
spin model. By studying the mass gap and the power-law exponent of the
spin-spin correlation function for our Heisenberg spin model, we analyze the
Luttinger liquid to charge-density-wave transition at half-filling in the
effective polaronic Hamiltonian. We calculate the structure factor at all
fillings and find that the spin-spin correlation length decreases as one
deviates from half-filling. We also extend our derivation of polaronic
Hamiltonian to -dimensions.Comment: Content changed. Accepted in Phys. Rev.
Heterogeneity Induced Order in Globally Coupled Chaotic Systems
Collective behavior is studied in globally coupled maps with distributed
nonlinearity. It is shown that the heterogeneity enhances regularity in the
collective dynamics. Low-dimensional quasiperiodic motion is often found for
the mean-field, even if each element shows chaotic dynamics. The mechanism of
this order is due to the formation of an internal bifurcation structure, and
the self-consistent dynamics between the structures and the mean-field.
Keywords: Globally Coupled Map with heterogeneity, Collective behaviorComment: 11 pages (Revtex) + 4 figures (PostScript,tar+gzip
Can stochastic renewal of maps be a model for cerebral cortex?
We introduce a new type of stochastic dynamics as stochastic renewal of maps, relating to the neurodynamics of cortical memory process. This stochastic dynamics can be reformulated by a skew product transformation of two kinds of variables, one of which describes an underlying dynamical system and the other describes chaotic dynamics, say, Bernoulli shift. The feature of orbits in phase space is investigated in the particular case of neurodynamics model for cortical chaotic memories. A new computational result on the functional role of cortical chaos is obtained. We also present a neurobiological interpretation of psychological perception and memories by means of the notion of chaotic itinerancy
Episodic Visual Hallucinations, Inference and Free Energy
\ua9 2024 by the authors. Understandings of how visual hallucinations appear have been highly influenced by generative approaches, in particular Friston’s Active Inference conceptualization. Their core proposition is that these phenomena occur when hallucinatory expectations outweigh actual sensory data. This imbalance occurs as the brain seeks to minimize informational free energy, a measure of the distance between predicted and actual sensory data in a stationary open system. We review this approach in the light of old and new information on the role of environmental factors in episodic hallucinations. In particular, we highlight the possible relationship of specific visual triggers to the onset and offset of some episodes. We use an analogy from phase transitions in physics to explore factors which might account for intermittent shifts between veridical and hallucinatory vision. In these triggered forms of hallucinations, we suggest that there is a transient disturbance in the normal one-to-one correspondence between a real object and the counterpart perception such that this correspondence becomes between the real object and a hallucination. Generative models propose that a lack of information transfer from the environment to the brain is one of the key features of hallucinations. In contrast, we submit that specific information transfer is required at onset and offset in these cases. We propose that this transient one-to-one correspondence between environment and hallucination is mediated more by aberrant discriminative than by generative inference. Discriminative inference can be conceptualized as a process for maximizing shared information between the environment and perception within a self-organizing nonstationary system. We suggest that generative inference plays the greater role in established hallucinations and in the persistence of individual hallucinatory episodes. We further explore whether thermodynamic free energy may be an additional factor in why hallucinations are temporary. Future empirical research could productively concentrate on three areas. Firstly, subjective perceptual changes and parallel variations in brain function during specific transitions between veridical and hallucinatory vision to inform models of how episodes occur. Secondly, systematic investigation of the links between environment and hallucination episodes to probe the role of information transfer in triggering transitions between veridical and hallucinatory vision. Finally, changes in hallucinatory episodes over time to elucidate the role of learning on phenomenology. These empirical data will allow the potential roles of different forms of inference in the stages of hallucinatory episodes to be elucidated
Towards an interpretation of dynamic neural activity in terms of chaotic dynamical systems
Using the concepts of chaotic itinerancy and Cantor coding, we present an interpretation of dynamic neural activity found in cortical and subcortical areas. The discovery of chaotic itinerancy and Cantor coding in high- dimensional dynamical systems has motivated a new interpretation of this dynamic neural activity, cast in terms of the high-dimensional transitory dynamics among quasi-attractors
- …