1,133 research outputs found
Pseudo Goldstone Bosons Phenomenology in Minimal Walking Technicolor
We construct the non-linear realized Lagrangian for the Goldstone Bosons
associated to the breaking pattern of SU(4) to SO(4). This pattern is expected
to occur in any Technicolor extension of the standard model featuring two Dirac
fermions transforming according to real representations of the underlying gauge
group. We concentrate on the Minimal Walking Technicolor quantum number
assignments with respect to the standard model symmetries. We demonstrate that
for, any choice of the quantum numbers, consistent with gauge and Witten
anomalies the spectrum of the pseudo Goldstone Bosons contains electrically
doubly charged states which can be discovered at the Large Hadron Collider.Comment: 25 pages, 5 figure
First Principles Simulations of Boron Diffusion in Graphite
Boron strongly modifies electronic and diffusion properties of graphite. We report the first ab initio study of boron interaction with the point defects in graphite, which includes structures, thermodynamics, and diffusion. A number of possible diffusion mechanisms of boron in graphite are suggested. We conclude that boron diffuses in graphite by a kick-out mechanism. This mechanism explains the common activation energy, but large magnitude difference, for the rate of boron diffusion parallel and perpendicular to the basal plane. © 2007 The American Physical Society
Les pratiques pastorales d'un berger sur l'alpage de la Vieille Selle: un modèle reproductible?
Des critères de structuration et de gestion de l’espace sont retenus pour caractériser les pratiques pastorales d’un berger sur un alpage
European Non-native Species in Aquaculture Risk Analysis Scheme - a summary of assessment protocols and decision support tools for use of alien species in aquaculture
The European Non-native Species in Aquaculture Risk Analysis Scheme (ENSARS) was developed in response to European 'Council Regulation No. 708/2007 of 11 June 2007 concerning use of alien and locally absent species in aquaculture' to provide protocols for identifying and evaluating the potential risks of using non-native species in aquaculture. ENSARS is modular in structure and adapted from non-native species risk assessment schemes developed by the European and Mediterranean Plant Protection Organisation and for the UK. Seven of the eight ENSARS modules contain protocols for evaluating the risks of escape, introduction to and establishment in open waters, of any non-native aquatic organism being used (or associated with those used) in aquaculture, that is, transport pathways, rearing facilities, infectious agents, and the potential organism, ecosystem and socio-economic impacts. A concluding module is designed to summarise the risks and consider management options. During the assessments, each question requires the assessor to provide a response and confidence ranking for that response based on expert opinion. Each module can also be used individually, and each requires a specific form of expertise. Therefore, a multidisciplinary assessment team is recommended for its completion
Planck pre-launch status: HFI beam expectations from the optical optimisation of the focal plane
Planck is a European Space Agency (ESA) satellite, launched in May 2009, which will map the cosmic microwave background anisotropies in intensity and polarisation with unprecedented detail and sensitivity. It will also provide full-sky maps of astrophysical foregrounds. An accurate knowledge of the telescope beam patterns is an essential element for a correct analysis of the acquired astrophysical data. We present a detailed description of the optical design of the High Frequency Instrument (HFI) together with some of the optical performances measured during the calibration campaigns. We report on the evolution of the knowledge of the pre-launch HFI beam patterns when coupled to ideal telescope elements, and on their significance for the HFI data analysis procedure
High angular resolution Sunyaev-Zel'dovich observations of MACS J1423.8+2404 with NIKA: Multiwavelength analysis
The prototype of the NIKA2 camera, NIKA, is an instrument operating at the
IRAM 30-m telescope, which can observe simultaneously at 150 and 260GHz. One of
the main goals of NIKA2 is to measure the pressure distribution in galaxy
clusters at high resolution using the thermal SZ (tSZ) effect. Such
observations have already proved to be an excellent probe of cluster pressure
distributions even at high redshifts. However, an important fraction of
clusters host submm and/or radio point sources, which can significantly affect
the reconstructed signal. Here we report on <20" resolution observations at 150
and 260GHz of the cluster MACSJ1424, which hosts both radio and submm point
sources. We examine the morphology of the tSZ signal and compare it to other
datasets. The NIKA data are combined with Herschel satellite data to study the
SED of the submm point source contaminants. We then perform a joint
reconstruction of the intracluster medium (ICM) electronic pressure and density
by combining NIKA, Planck, XMM-Newton, and Chandra data, focusing on the impact
of the radio and submm sources on the reconstructed pressure profile. We find
that large-scale pressure distribution is unaffected by the point sources
because of the resolved nature of the NIKA observations. The reconstructed
pressure in the inner region is slightly higher when the contribution of point
sources are removed. We show that it is not possible to set strong constraints
on the central pressure distribution without accurately removing these
contaminants. The comparison with X-ray only data shows good agreement for the
pressure, temperature, and entropy profiles, which all indicate that MACSJ1424
is a dynamically relaxed cool core system. The present observations illustrate
the possibility of measuring these quantities with a relatively small
integration time, even at high redshift and without X-ray spectroscopy.Comment: 15 pages, 17 figures, submitted to A&
POLOCAM: a millimeter wavelength cryogenic polarimeter prototype for MUSIC-POL
As a proof-of-concept, we have constructed and tested a cryogenic polarimeter in the laboratory as a prototype for the MUSIC instrument (Multiwavelength Sub/millimeter Kinetic Inductance Camera). The POLOCAM instrument consists of a rotating cryogenic polarization modulator (sapphire half-waveplate) and polarization analyzer (lithographed copper polarizers deposited on a thin film) placed into the optical path at the Lyot stop (4K cold pupil stop) in a cryogenic dewar. We present an overview of the project, design and performance results of the POLOCAM instrument (including polarization efficiencies and instrumental polarization), as well as future application to the MUSIC-POL instrument
PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium
Future cosmology space missions will concentrate on measuring the
polarization of the Cosmic Microwave Background, which potentially carries
invaluable information about the earliest phases of the evolution of our
universe. Such ambitious projects will ultimately be limited by the sensitivity
of the instrument and by the accuracy at which polarized foreground emission
from our own Galaxy can be subtracted out. We present the PILOT balloon project
which will aim at characterizing one of these foreground sources, the
polarization of the dust continuum emission in the diffuse interstellar medium.
The PILOT experiment will also constitute a test-bed for using multiplexed
bolometer arrays for polarization measurements. We present the results of
ground tests obtained just before the first flight of the instrument.Comment: 17 pages, 13 figures. Presented at SPIE, Millimeter, Submillimeter,
and Far-Infrared Detectors and Instrumentation for Astronomy VII. To be
published in Proc. SPIE volume 915
Optical and Quasi-Optical Analysis of System Components for a Far-Infrared Space Interferometer
Many important astrophysical processes occur at wavelengths that fall within the far-infrared band of the EM spectrum, and over distance scales that require sub-arc second spatial resolution. It is clear that in order to achieve sub-arc second resolution at these relatively long wavelengths (compared to optical/near-IR), which are strongly absorbed by the atmosphere, a space-based far-IR interferometer will be required. We present analysis of the optical system for a proposed spatial-spectral interferometer, discussing the challenges that arise when designing such a system and the simulation techniques employed that aim to resolve these issues. Many of these specific challenges relate to combining the beams from multiple telescopes where the wavelengths involved are relatively short (compared to radio interferometry), meaning that care must be taken with mirror surface quality, where surface form errors not only present potential degradation of the single system beams, but also serve to reduce fringe visibility when multiple telescope beams are combined. Also, the long baselines required for sub-arc second resolution present challenges when considering propagation of the relatively long wavelengths of the signal beam, where beam divergence becomes significant if the beam demagnification of the telescopes is not carefully considered. Furthermore, detection of the extremely weak far-IR signals demands ultra-sensitive detectors and instruments capable of operating at maximum efficiency. Thus, as will be shown, care must be taken when designing each component of such a complex quasioptical system
Black hole accretion and star formation as drivers of gas excitation and chemistry in Mrk231
We present a full high resolution SPIRE FTS spectrum of the nearby
ultraluminous infrared galaxy Mrk231. In total 25 lines are detected, including
CO J=5-4 through J=13-12, 7 rotational lines of H2O, 3 of OH+ and one line each
of H2O+, CH+, and HF. We find that the excitation of the CO rotational levels
up to J=8 can be accounted for by UV radiation from star formation. However,
the approximately flat luminosity distribution of the CO lines over the
rotational ladder above J=8 requires the presence of a separate source of
excitation for the highest CO lines. We explore X-ray heating by the accreting
supermassive black hole in Mrk231 as a source of excitation for these lines,
and find that it can reproduce the observed luminosities. We also consider a
model with dense gas in a strong UV radiation field to produce the highest CO
lines, but find that this model strongly overpredicts the hot dust mass in
Mrk231. Our favoured model consists of a star forming disk of radius 560 pc,
containing clumps of dense gas exposed to strong UV radiation, dominating the
emission of CO lines up to J=8. X-rays from the accreting supermassive black
hole in Mrk231 dominate the excitation and chemistry of the inner disk out to a
radius of 160 pc, consistent with the X-ray power of the AGN in Mrk231. The
extraordinary luminosity of the OH+ and H2O+ lines reveals the signature of
X-ray driven excitation and chemistry in this region.Comment: 5 pages, 2 figures, accepted for publication in Astronomy &
Astrophysics Special Issue on Herschel first result
- …
