622 research outputs found
A multidisciplinary approach to study precipitation kinetics and hardening in an Al-4Cu (wt. %) alloy
A multidisciplinary approach is presented to analyse the precipitation
process in a model Al-Cu alloy. Although this topic has been extensively
studied in the past, most of the investigations are focussed either on
transmission electron microscopy or on thermal analysis of the processes. The
information obtained from these techniques cannot, however, provide a coherent
picture of all the complex transformations that take place during decomposition
of supersaturated solid solution. Thermal analysis, high resolution
dilatometry, (high resolution) transmission electron microscopy and density
functional calculations are combined to study precipitation kinetics,
interfacial energies, and the effect of second phase precipitates on the
mechanical strength of the alloy. Data on both the coherent and semi-coherent
orientations of the {\theta}"/Al interface are reported for the first time. The
combination of the different characterization and modelling techniques provides
a detailed picture of the precipitation phenomena that take place during aging
and of the different contributions to the strength of the alloy. This strategy
can be used to analyse and design more complex alloys
Structure-property relations of metallic materials with multiscale microstructures
Nanostructured metals have higher strength than those of the coarse grained metals but suffer from the extremely limited ductility. Development of the multiscale microstructures can improve the ductility of these high strength materials due to the introduction of a specific range of grain sizes in micro level. The present work relates the multiscale microstructures in metals to their overall structure properties using a fractal theory and the modified mean-field method, where three microstructural parameters are introduced and thus mechanical properties such as strength and ductility are presented as a function of these microstructural parameters. Meanwhile, with the applications of the finite element method, the multiscale unit cell approach is also critically developed and applied with a focus on predicting the related stress-strain relations of the metals with multiscale microstructures. For verification of these proposed theoretical and numerical algorithms, the mechanical properties of the pure copper with three-grain microstructures are investigated and the results from FEA and theoretical solutions have a reasonable agreement
Decomposition process in a FeAuPd alloy nanostructured by severe plastic deformation
The decomposition process mechanisms have been investigated in a Fe50Au25Pd25
(at.%) alloy processed by severe plastic deformation. Phases were characterized
by X-ray diffraction and microstructures were observed using transmission
electron microscopy. In the coarse grain alloy homogenized and aged at , the bcc \alpha-Fe and fcc AuPd phases nucleate in the fcc
supersaturated solid solution and grow by a discontinuous precipitation process
resulting in a typical lamellar structure. The grain size of the homogenized
FeAuPd alloy was reduced in a range of 50 to 100nm by high pressure torsion.
Aging at this nanostructure leads to the decomposition
of the solid solution into an equi-axed microstructure. The grain growth is
very limited during aging and the grain size remains under 100nm. The
combination of two phases with different crystallographic structures (bcc
\alpha-Fe and fcc AuPd) and of the nanoscaled grain size gives rise to a
significant hardening of the allo
Electromagnetic wave diffraction by bi-periodic thin conductive grating
© 2015 I.E. Pleshchinskaya, N.B. Pleshchinskii and I.V. Sabirov. It has been proved that the electromagnetic wave diffraction problem by bi-periodical grating of thin conductive strips can have only one solution. Therefore, only Floquet wave can appear by the diffraction of the plane wave by the grating. The diffraction problem is reduced to regular infinite set of linear algebraic equations by method of integral- summatorial identities
Incorporation of Y2O3 Particles into 410L Stainless Steel by a Powder Metallurgy Route
Addition of yttria to steels has been proposed for the fabrication of oxide-dispersion-strengthened materials for nuclear power applications. We have investigated materials prepared from 12 Cr martensitic stainless steel, AISI 410L, produced by powder metallurgy. Materials were produced with and without yttria addition, and two different sizes of yttria were used, 0.9 µm and 50 nm. Tensile and mini-creep tests were performed to determine mechanical properties. Optical microscopy, SEM, TEM, and EDX analysis were used to investigate the microstructures and deformation mechanisms and to obtain information about non-metallic inclusion particles. SiO2, MnS, and Y2Si2O7 inclusion particles were observed. An SiO2 and Y2O3 interaction was seen to have occurred during the ball milling, which impaired the final mechanical properties. Small-angle neutron scattering experiments showed that the matrix chemistry prevented effective dissolution of the yttria. © The Author(s) 201
Laser spectoscopy of Mandelstems - Brillian scattering in aqueous nonelectrolyte solutions
In this work we developed a method of laser spectroscopy to study the frequency shift of Mandelshtam-Brillouin components in the fine structure of Reyleigh line, which are origin due to the pressure fluctuations. The method allows to study a character of hypersound (~109 Hz)propagation in a critical region of a thermodynamic instability. Analysis of a complex of experimental material , presented in the paper, allows one to conclude that in aqueous solutions of non-electrolytes at critical concentration there is a whole structural transformations in solutions at the singular point temperature in “temperature-concentration” coordinate
Direct Search for Charged Higgs Bosons in Decays of Top Quarks
We present a search for charged Higgs bosons in decays of pair-produced top
quarks in pbar p collisions at sqrt(s) = 1.8 TeV using 62.2 pb^-1 of data
recorded by the D0 detector at the Fermilab Tevatron collider. No evidence is
found for signal, and we exclude at 95% confidence most regions of the (M
higgs, tan beta) parameter space where the decay t->H b has a branching
fraction greater than 0.36 and B(H -> tau nu) is large.Comment: 11 pages, 4 figures, submitted to Phys. Rev. Let
The algorithm of the expert system of APCS (automated process control systems) tests
description of a general algorithm of the expert system of APCS tests is presented
- …
