64 research outputs found

    On-chip cavity quantum phonodynamics with an acceptor qubit in silicon

    Full text link
    We describe a chip-based, solid-state analogue of cavity-QED utilizing acoustic phonons instead of photons. We show how long-lived and tunable acceptor impurity states in silicon nanomechanical cavities can play the role of a matter non-linearity for coherent phonons just as, e.g., the Josephson qubit plays in circuit-QED. Both strong coupling (number of Rabi oscillations ~ 100) and strong dispersive coupling (0.1-2 MHz) regimes can be reached in cavities in the 1-20 GHz range, enabling the control of single phonons, phonon-phonon interactions, dispersive phonon readout of the acceptor qubit, and compatibility with other optomechanical components such as phonon-photon translators. We predict explicit experimental signatures of the acceptor-cavity system.Comment: 6 pages, 2 figures, PDFLaTeX. New version improves clarit

    Parameterisation of the residual temperature distribution based on the modelling of successive emission of prompt neutrons

    Get PDF
    A new deterministic modelling taking into account the successive emission of prompt neutrons from initial fragments of a fragmentation range {A, Z, TKE} constructed as in the Point-by-Point (PbP) treatment is described. The good agreement of different prompt emission quantities obtained from this modelling (e.g. v(A), v(TKE), E-γ(A), E-γ(TKE), etc.) with the experimental data and the results of the PbP model and other Monte-Carlo models validates the present modelling of sequential emission. The distributions of different residual quantities, including the residual temperature distributions P(T) of light and heavy fragments allow to obtain a new parameterisation of P(T) which can be used in the PbP model and the Los Alamos model

    Cooling a nanomechanical resonator with quantum back-action

    Get PDF
    Quantum mechanics demands that the act of measurement must affect the measured object. When a linear amplifier is used to continuously monitor the position of an object, the Heisenberg uncertainty relationship requires that the object be driven by force impulses, called back-action. Here we measure the back-action of a superconducting single-electron transistor (SSET) on a radiofrequency nanomechanical resonator. The conductance of the SSET, which is capacitively coupled to the resonator, provides a sensitive probe of the latter's position;back-action effects manifest themselves as an effective thermal bath, the properties of which depend sensitively on SSET bias conditions. Surprisingly, when the SSET is biased near a transport resonance, we observe cooling of the nanomechanical mode from 550mK to 300mK-- an effect that is analogous to laser cooling in atomic physics. Our measurements have implications for nanomechanical readout of quantum information devices and the limits of ultrasensitive force microscopy (such as single-nuclear-spin magnetic resonance force microscopy). Furthermore, we anticipate the use of these backaction effects to prepare ultracold and quantum states of mechanical structures, which would not be accessible with existing technology.Comment: 28 pages, 7 figures; accepted for publication in Natur

    Nonideal quantum detectors in Bayesian formalism

    Full text link
    The Bayesian formalism for a continuous measurement of solid-state qubits is derived for a model which takes into account several factors of the detector nonideality. In particular, we consider additional classical output and backaction noises (with finite correlation), together with quantum-limited output and backaction noises, and take into account possible asymmetry of the detector coupling. The formalism is first derived for a single qubit and then generalized to the measurement of entangled qubits.Comment: 10 page

    Investigation of 14.1 MeV neutrons interaction with C, Mg, Cr

    Get PDF
    This paper is dedicated to n+12C, n+24Mg, n+52Cr -reactions investigation at 14.1 MeV neutron energy. Characteristics of these reactions have been calculated using TALYS code to estimate perspectives of using of this code in data interpretation in the TANGRA project. This project is performed in Frank Laboratory of Neutron Physics (FLNP JINR) to investigate properties of (n,xγ)-type reactions, important for fundamental and practical applications

    Reverse quantum state engineering using electronic feedback loops

    Get PDF
    We propose an all-electronic technique to manipulate and control interacting quantum systems by unitary single-jump feedback conditioned on the outcome of a capacitively coupled electrometer and in particular a single-electron transistor. We provide a general scheme to stabilize pure states in the quantum system and employ an effective Hamiltonian method for the quantum master equation to elaborate on the nature of stabilizable states and the conditions under which state purification can be achieved. The state engineering within the quantum feedback scheme is shown to be linked with the solution of an inverse eigenvalue problem. Two applications of the feedback scheme are presented in detail: (i) stabilization of delocalized pure states in a single charge qubit and (ii) entanglement stabilization in two coupled charge qubits. In the latter example we demonstrate the stabilization of a maximally entangled Bell state for certain detector positions and local feedback operations.Comment: 23 pages, 6 figures, to be published by New Journal of Physics (2013
    corecore