4,816 research outputs found

    Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT)

    Get PDF
    International audienceA methodology for representing much of the physical information content of the METEOSAT Second Generation (MSG) geostationary satellite using red-green-blue (RGB) composites of the computed physical values of the picture elements is presented. The physical values are the solar reflectance in the solar channels and brightness temperature in the thermal channels. The main RGB compositions are (1) "Day Natural Colors", presenting vegetation in green, bare surface in brown, sea surface in black, water clouds as white, ice as magenta; (2) "Day Microphysical", presenting cloud microstructure using the solar reflectance component of the 3.9 ?m, visible and thermal IR channels; (3) "Night Microphysical", also presenting clouds microstructure using the brightness temperature differences between 10.8 and 3.9 ?m; (4) "Day and Night", using only thermal channels for presenting surface and cloud properties, desert dust and volcanic emissions; (5) "Air Mass", presenting mid and upper tropospheric features using thermal water vapor and ozone channels. The scientific basis for these rendering schemes is provided, with examples for the applications. The expanding use of these rendering schemes requires their proper documentation and setting as standards, which is the main objective of this publication

    The time-space exchangeability of satellite retrieved relations between cloud top temperature and particle effective radius

    No full text
    International audienceA 3-minute 3-km rapid scan of the METEOSAT Second Generation geostationary satellite over southern Africa was applied to tracking the evolution of cloud top temperature (T) and particle effective radius (re) of convective elements. The evolution of T-re relations showed little dependence on time, leaving re to depend almost exclusively on T. Furthermore, cloud elements that fully grew to large cumulonimbus stature had the same T-re relations as other clouds in the same area with limited development that decayed without ever becoming a cumulonimbus. Therefore, a snap shot of T-re relations over a cloud field provides the same relations as composed from tracking the time evolution of T and re of individual clouds, and then compositing them. This is the essence of exchangeability of time and space scales, i.e., ergodicity, of the T-re relations for convective clouds. This property has allowed inference of the microphysical evolution of convective clouds with a snap shot from a polar orbiter. The fundamental causes for the ergodicity are suggested to be the observed stability of re for a given height above cloud base in a convective cloud, and the constant renewal of growing cloud tops with cloud bubbles that replace the cloud tops with fresh cloud matter from below

    Switching cloud cover and dynamical regimes from open to closed Benard cells in response to the suppression of precipitation by aerosols

    No full text
    International audienceThe dynamic structure of the atmospheric marine boundary layer (MBL) supports two distinct states of cloud cover: closed and open Benard cellular convection. Closed cells are nearly fully cloud covered, while the open cells have <40% cloud cover. Here we show that aerosols have a greater than expected impact on the cloud cover by changing the mode of cellular convection. By suppressing precipitation aerosols can reverse the direction of the airflow, converting the cloud structure from open to closed cells and doubling the cloud cover. The two states possess positive feedbacks for self maintenance, so that small changes of the conditions can lead to bifurcation of the MBL cloud regime. The transition occurs at near pristine background level of aerosols, creating a large sensitivity of cloud radiative forcing to very small changes in aerosols at the MBL. This can have a major impact on global temperatures

    Coherence properties and quantum state transportation in an optical conveyor belt

    Get PDF
    We have prepared and detected quantum coherences with long dephasing times at the level of single trapped cesium atoms. Controlled transport by an "optical conveyor belt" over macroscopic distances preserves the atomic coherence with slight reduction of coherence time. The limiting dephasing effects are experimentally identified and are of technical rather than fundamental nature. We present an analytical model of the reversible and irreversible dephasing mechanisms. Coherent quantum bit operations along with quantum state transport open the route towards a "quantum shift register" of individual neutral atoms.Comment: 4 pages, 3 figure

    Phase transitions and ordering of confined dipolar fluids

    Get PDF
    We apply a modified mean-field density functional theory to determine the phase behavior of Stockmayer fluids in slitlike pores formed by two walls with identical substrate potentials. Based on the Carnahan-Starling equation of state, a fundamental-measure theory is employed to incorporate the effects of short-ranged hard sphere - like correlations while the long-ranged contributions to the fluid interaction potential are treated perturbatively. The liquid-vapor, ferromagnetic liquid - vapor, and ferromagnetic liquid - isotropic liquid first-order phase separations are investigated. The local orientational structure of the anisotropic and inhomogeneous ferromagnetic liquid phase is also studied. We discuss how the phase diagrams are shifted and distorted upon varying the pore width.Comment: 15 pages including 8 figure

    Weyl-Gauging and Conformal Invariance

    Full text link
    Scale-invariant actions in arbitrary dimensions are investigated in curved space to clarify the relation between scale-, Weyl- and conformal invariance on the classical level. The global Weyl-group is gauged. Then the class of actions is determined for which Weyl-gauging may be replaced by a suitable coupling to the curvature (Ricci gauging). It is shown that this class is exactly the class of actions which are conformally invariant in flat space. The procedure yields a simple algebraic criterion for conformal invariance and produces the improved energy-momentum tensor in conformally invariant theories in a systematic way. It also provides a simple and fundamental connection between Weyl-anomalies and central extensions in two dimensions. In particular, the subset of scale-invariant Lagrangians for fields of arbitrary spin, in any dimension, which are conformally invariant is given. An example of a quadratic action for which scale-invariance does not imply conformal invariance is constructed.Comment: Extended version including discussion of arbitrary spin in any dimensions. References adde

    Representation of spectral functions and thermodynamics

    Full text link
    In this paper we study the question of effective field assignment to measured or nonperturbatively calculated spectral functions. The straightforward procedure is to approximate it by a sum of independent Breit-Wigner resonances, and assign an independent field to each of these resonances. The problem with this idea is that it introduces new conserved quantities in the free model (the new particle numbers), therefore it changes the symmetry of the system. We avoid this inconsistency by representing each quantum channel with a single effective field, no matter how complicated the spectral function is. Thermodynamical characterization of the system will be computed with this representation method, and its relation to the independent resonance approximation will be discussed.Comment: 15 pages, 9 figures, revtex

    A computational technique for simulating ionization energy deposition by energetic ions in complex targets

    Get PDF
    An ion transport code was developed for simulating ionization energy deposition by energetic ions in sensitive volumes of complex structures. The code was used to simulate recent microdosimetry measurements performed with silicon-on-insulator (SOI) microdosimeters in Fast Neutron Therapy (FNT)

    EvoBot: Towards a Robot-Chemostat for Culturing and Maintaining Microbial Fuel Cells (MFCs)

    Get PDF
    In this paper we present EvoBot, a RepRap open-source 3D-printer modified to operate like a robot for culturing and maintaining Microbial Fuel Cells (MFCs). EvoBot is a modular liquid handling robot that has been adapted to host MFCs in its experimental layer, gather data from the MFCs and react on the set thresholds based on a feedback loop. This type of robot-MFC interaction, based on the feedback loop mechanism, will enable us to study further the adaptability and stability of these systems. To date, EvoBot has automated the nurturing process of MFCs with the aim of controlling liquid delivery, which is akin to a chemostat. The chemostat is a well-known microbiology method for culturing bacterial cells under controlled conditions with continuous nutrient supply. EvoBot is perhaps the first pioneering attempt at functionalizing the 3D printing technology by combining it with the chemostat methods. In this paper, we will explore the experiments that EvoBot has carried out so far and how the platform has been optimised over the past two years

    The Glass Transition and Liquid-Gas Spinodal Boundaries of Metastable Liquids

    Full text link
    A liquid can exist under conditions of thermodynamic stability or metastability within boundaries defined by the liquid-gas spinodal and the glass transition line. The relationship between these boundaries has been investigated previously using computer simulations, the energy landscape formalism, and simplified model calculations. We calculate these stability boundaries semi-analytically for a model glass forming liquid, employing accurate liquid state theory and a first-principles approach to the glass transition. These boundaries intersect at a finite temperature, consistent with previous simulation-based studies.Comment: Minor text revisions. Fig.s 4, 5 update
    • …
    corecore