10,779 research outputs found

    Cosmology without inflation

    Full text link
    We propose a new cosmological paradigm in which our observed expanding phase is originated from an initially large contracting Universe that subsequently experienced a bounce. This category of models, being geodesically complete, is non-singular and horizon-free, and can be made to prevent any relevant scale to ever have been smaller than the Planck length. In this scenario, one can find new ways to solve the standard cosmological puzzles. One can also obtain scale invariant spectra for both scalar and tensor perturbations: this will be the case, for instance, if the contracting Universe is dust-dominated at the time at which large wavelength perturbations get larger than the curvature scale. We present a particular example based on a dust fluid classically contracting model, where a bounce occurs due to quantum effects, in which these features are explicit.Comment: 8 pages, no figur

    Retrieving Layer-Averaged Tropospheric Humidity from Advanced Technology Microwave Sounder Water Vapor Channels

    Get PDF
    A method is presented to calculate layer-averaged tropospheric humidity (LAH) from the observations of the Advanced Technology Microwave Sounder (ATMS) water vapor channels. The method is based on a linear relation between the satellite brightness temperatures (Tb) and natural logarithm of Jacobian weighted humidity. The empirical coefficients of this linear relation were calculated using different data sets, as well as a fast and a line-by-line radiative transfer (RT) model. It was found that the coefficients do not significantly depend on the data set or the RT model. This Tb to the LAH transformation method can be applied to either original or limb-corrected ATMS Tb's. The method was validated using both simulated and observed ATMS Tb's. The systematic difference between the estimated and calculated LAH values was less than 10% in most cases. We also tested the transformation method using a fixed Jacobian for each channel. The bias generally increases when fixed Jacobians are used, but there is still a satisfactory agreement between estimated and calculated LAH values. In addition, the spatial distribution of the bias was investigated using the European Center for Medium-Range Weather Forecasting (ECMWF) Interim Reanalysis (ERA-interim) and collocated ATMS observations. The bias did not indicate any significant regional dependence when actual Jacobians were used, but in the case of fixed Jacobians, the bias generally increased from middle latitude toward the poles

    Phase behavior of a confined nano-droplet in the grand-canonical ensemble: the reverse liquid-vapor transition

    Full text link
    The equilibrium density distribution and thermodynamic properties of a Lennard-Jones fluid confined to nano-sized spherical cavities at constant chemical potential was determined using Monte Carlo simulations. The results describe both a single cavity with semipermeable walls as well as a collection of closed cavities formed at constant chemical potential. The results are compared to calculations using classical Density Functional Theory (DFT). It is found that the DFT calculations give a quantitatively accurate description of the pressure and structure of the fluid. Both theory and simulation show the presence of a ``reverse'' liquid-vapor transition whereby the equilibrium state is a liquid at large volumes but becomes a vapor at small volumes.Comment: 13 pages, 8 figures, to appear in J. Phys. : Cond. Mat

    A Dark Spot on a Massive White Dwarf

    Get PDF
    We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips must be a dark spot that comes into view every 38 min due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B<70 kG. Since up to 15% of white dwarfs display kG magnetic fields, such eclipse-like events should be common around white dwarfs. We discuss the potential implications of this discovery on transient surveys targeting white dwarfs, like the K2 mission and the Large Synoptic Survey Telescope.Comment: ApJ Letters, in pres

    Enhanced thermal production of hard dileptons by 323\to 2 processes

    Get PDF
    In the framework of the Hard Thermal Loop effective theory, we calculate the two-loop contributions to hard lepton pair production in a quark-gluon plasma. We show that the result is free of any infrared and collinear singularity. We also recover the known fact that perturbation theory leads to integrable singularities at the location of the threshold for qqˉγq\bar{q}\to\gamma^*. It appears that the process calculated here significantly enhances the rate of low mass hard dileptons.Comment: 32 latex pages, 14 postscript figure

    Order from Disorder in Graphene Quantum Hall Ferromagnet

    Full text link
    Valley-polarized quantum Hall states in graphene are described by a Heisenberg O(3) ferromagnet model, with the ordering type controlled by the strength and sign of valley anisotropy. A mechanism resulting from electron coupling to strain-induced gauge field, giving leading contribution to the anisotropy, is described in terms of an effective random magnetic field aligned with the ferromagnet z axis. We argue that such random field stabilizes the XY ferromagnet state, which is a coherent equal-weight mixture of the KK and KK' valley states. Other implications such as the Berezinskii-Kosterlitz-Thouless ordering transition and topological defects with half-integer charge are discussed.Comment: 4 pages, 2 figure

    Colossal Positive Magnetoresistance in a Doped Nearly Magnetic Semiconductor

    Get PDF
    We report on a positive colossal magnetoresistance (MR) induced by metallization of FeSb2_{2}, a nearly magnetic or "Kondo" semiconductor with 3d ions. We discuss contribution of orbital MR and quantum interference to enhanced magnetic field response of electrical resistivity.Comment: 5 pages, 5 figure

    Staggered local density-of-states around the vortex in underdoped cuprates

    Get PDF
    We have studied a single vortex with the staggered flux (SF) core based on the SU(2) slave-boson theory of high TcT_c superconductors. We find that whereas the center in the vortex core is a SF state, as one moves away from the core center, a correlated staggered modulation of the hopping amplitude χ\chi and pairing amplitude Δ\Delta becomes predominant. We predict that in this region, the local density-of-states (LDOS) exhibits staggered modulation when measured on the bonds, which may be directly detected by STM experiments.Comment: 4 pages, 3 figure

    Predicting experimentally stable allotropes: Instability of penta-graphene

    Get PDF
    International audienceIn recent years, a plethora of theoretical carbon allotropes have been proposed, none of which has been experimentally isolated. We discuss here criteria that should be met for a new phase to be potentially experimentally viable. We take as examples Haeckelites, 2D networks of sp2-carbon–containing pentagons and heptagons, and “penta-graphene,” consisting of a layer of pentagons constructed from a mixture of sp2- and sp3-coordinated carbon atoms. In 2D projection appearing as the “Cairo pattern,” penta-graphene is elegant and aesthetically pleasing. However, we dispute the author’s claims of its potential stability and experimental relevanc

    Quantum Communication in Rindler Spacetime

    Full text link
    A state that an inertial observer in Minkowski space perceives to be the vacuum will appear to an accelerating observer to be a thermal bath of radiation. We study the impact of this Davies-Fulling-Unruh noise on communication, particularly quantum communication from an inertial sender to an accelerating observer and private communication between two inertial observers in the presence of an accelerating eavesdropper. In both cases, we establish compact, tractable formulas for the associated communication capacities assuming encodings that allow a single excitation in one of a fixed number of modes per use of the communications channel. Our contributions include a rigorous presentation of the general theory of the private quantum capacity as well as a detailed analysis of the structure of these channels, including their group-theoretic properties and a proof that they are conjugate degradable. Connections between the Unruh channel and optical amplifiers are also discussed.Comment: v3: 44 pages, accepted in Communications in Mathematical Physic
    corecore