26 research outputs found

    Modeling the dynamics of Plasmodium vivax infection and hypnozoite reactivation in vivo

    Get PDF
    The dynamics of Plasmodium vivax infection is characterized by reactivation of hypnozoites at varying time intervals. The relative contribution of new P. vivax infection and reactivation of dormant liver stage hypnozoites to initiation of blood stage infection is unclear. In this study, we investigate the contribution of new inoculations of P. vivax sporozoites to primary infection versus reactivation of hypnozoites by modeling the dynamics of P. vivax infection in Thailand in patients receiving treatment for either blood stage infection alone (chloroquine), or the blood and liver stages of infection (chloroquine + primaquine). In addition, we also analysed rates of infection in a study in Papua New Guinea (PNG) where patients were treated with either artesunate, or artesunate + primaquine. Our results show that up to 96% of the P. vivax infection is due to hypnozoite reactivation in individuals living in endemic areas in Thailand. Similar analysis revealed the around 70% of infections in the PNG cohort were due to hypnozoite reactivation. We show how the age of the cohort, primaquine drug failure, and seasonality may affect estimates of the ratio of primary P. vivax infection to hypnozoite reactivation. Modeling of P. vivax primary infection and hypnozoite reactivation provides important insights into infection dynamics, and suggests that 90–96% of blood stage infections arise from hypnozoite reactivation. Major differences in infection kinetics between Thailand and PNG suggest the likelihood of drug failure in PNG

    Beam coupling in hybrid photorefractive inorganic-cholesteric liquid crystal cells: impact of optical rotation

    No full text
    We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive inorganic-cholesteric cell. A cholesteric layer is placed between two inorganic substrates. One of the substrates is photorefractive (Ce:SBN). Weak and strong light beams are incident on the hybrid cell. The interfering light beams induce a periodic space-charge field in the photorefractive window. This penetrates into the cholesteric liquid crystal (LC), inducing a diffraction grating written on the LC director. In the theory, the flexoelectric mechanism for electric field-director coupling is more important than the LC static dielectric anisotropy coupling. The LC optics is described in the Bragg regime. Each beam induces two circular polarized waves propagating in the cholesteric cell with different velocities. The model thus includes optical rotation in the cholesteric LC. The incident light beam wavelength can fall above, below, or inside the cholesteric gap. The theory calculates the energy gain of the weak beam, as a result of its interaction with the pump beam within the diffraction grating. Theoretical results for exponential gain coefficients are compared with experimental results for hybrid cells filled with cholesteric mixture BL038/CB15 at different concentrations of chiral agent CB15. Reconciliation between theory and experiment requires the inclusion of a phenomenological multiplier in the magnitude of the director grating. This multiplier is cubic in the space-charge field, and we provide a justification of the q-dependence of the multiplier. Within this paradigm, we are able to fit theory to experimental data for cholesteric mixtures with different spectral position of cholesteric gap relative to the wavelength of incident beams, subject to the use of some fitting parameters

    Two beam energy exchange in hybrid liquid crystal cells with photorefractive field controlled boundary conditions

    No full text
    We develop a theory describing energy gain when two light beams intersect in a hybrid nematic liquid crystal (LC) cell with photorefractive crystalline substrates. A periodic space-charge field induced by interfering light beams in the photorefractive substrates penetrates into the LC layer and reorients the director. We account for two main mechanisms of the LC director reorientation: the interaction of the photorefractive field with the LC flexopolarization and the director easy axis at the cell boundaries. It is shown that the resulting director grating is a sum of two in-phase gratings: the flexoelectric effect driven grating and the boundary-driven grating. Each light beam diffracts from the induced gratings leading to an energy exchange between beams. We evaluate the signal beam gain coefficient and analyze its dependence on the director anchoring energy and the magnitude of the director easy axis modulation

    Surface plasmon absorption in MoS2 and graphene-MoS2 micro-gratings and the impact of a liquid crystal substrate

    No full text
    The absorption coefficients of a far-infrared wave are calculated at normal incidence for MoS2 and graphene-MoS2 micro-ribbon gratings placed between a nematic LC and an isotropic dielectric medium. Maxima in the absorption spectra, which are related to the excitation of the surface plasmons in micro-ribbons of these gratings, are observed. The spectral position of absorption maxima depends on the grating spacing, micro-ribbon width, and conductivity of the ribbons. The impact of the 2D electron concentration of the MoS2 ribbons on the plasmon bands is different for a MoS2-grating versus a graphene-MoS2 grating. The influence of the LC orientational state on the absorption spectra of the gratings enables the manipulation of the absorption peak magnitude

    Modelling the Surface Plasmon Spectra of an ITO Nanoribbon Grating Adjacent to a Liquid Crystal Layer

    No full text
    The reflection and transmission coefficients of an indium tin oxide (ITO) nanoribbon grating placed between a nematic liquid crystal (LC) layer and an isotropic dielectric medium are calculated in the infrared region. Reflection and transmission spectra in the range of 1–5 μm related to the surface plasmon excitation in the ITO nanoribbons are obtained. Dependence of the peak spectral position on the grating spacing, the ribbon aspect ratio, and the 2D electron concentration in the nanoribbons is studied. It is shown that director reorientation in the LC layer influences the plasmon spectra of the grating, enabling a control of both the reflection and transmission of the system. The data obtained with our model are compared to the results obtained using COMSOL software, giving the similar results

    Data from: Modeling the dynamics of Plasmodium vivax infection and hypnozoite reactivation in vivo

    Get PDF
    The dynamics of Plasmodium vivax infection is characterized by reactivation of hypnozoites at varying time intervals. The relative contribution of new P. vivax infection and reactivation of dormant liver stage hypnozoites to initiation of blood stage infection is unclear. In this study, we investigate the contribution of new inoculations of P. vivax sporozoites to primary infection versus reactivation of hypnozoites by modeling the dynamics of P. vivax infection in Thailand in patients receiving treatment for either blood stage infection alone (chloroquine), or the blood and liver stages of infection (chloroquine + primaquine). In addition, we also analysed rates of infection in a study in Papua New Guinea (PNG) where patients were treated with either artesunate, or artesunate + primaquine. Our results show that up to 96% of the P. vivax infection is due to hypnozoite reactivation in individuals living in endemic areas in Thailand. Similar analysis revealed the around 70% of infections in the PNG cohort were due to hypnozoite reactivation. We show how the age of the cohort, primaquine drug failure, and seasonality may affect estimates of the ratio of primary P. vivax infection to hypnozoite reactivation. Modeling of P. vivax primary infection and hypnozoite reactivation provides important insights into infection dynamics, and suggests that 90–96% of blood stage infections arise from hypnozoite reactivation. Major differences in infection kinetics between Thailand and PNG suggest the likelihood of drug failure in PNG
    corecore