324 research outputs found

    Phase transitions, double-scaling limit, and topological strings

    Get PDF
    Topological strings on Calabi--Yau manifolds are known to undergo phase transitions at small distances. We study this issue in the case of perturbative topological strings on local Calabi--Yau threefolds given by a bundle over a two-sphere. This theory can be regarded as a q--deformation of Hurwitz theory, and it has a conjectural nonperturbative description in terms of q--deformed 2d Yang--Mills theory. We solve the planar model and find a phase transition at small radius in the universality class of 2d gravity. We give strong evidence that there is a double--scaled theory at the critical point whose all genus free energy is governed by the Painlev\'e I equation. We compare the critical behavior of the perturbative theory to the critical behavior of its nonperturbative description, which belongs to the universality class of 2d supergravity. We also give evidence for a new open/closed duality relating these Calabi--Yau backgrounds to open strings with framing.Comment: 49 pages, 3 eps figures; section added on non-perturbative proposal and 2d gravity; minor typos correcte

    Transition to Chaotic Phase Synchronization through Random Phase Jumps

    Full text link
    Phase synchronization is shown to occur between opposite cells of a ring consisting of chaotic Lorenz oscillators coupled unidirectionally through driving. As the coupling strength is diminished, full phase synchronization cannot be achieved due to random generation of phase jumps. The brownian dynamics underlying this process is studied in terms of a stochastic diffusion model of a particle in a one-dimensional medium.Comment: Accepted for publication in IJBC, 10 pages, 5 jpg figure

    Counting BPS states on the Enriques Calabi-Yau

    Full text link
    We study topological string amplitudes for the FHSV model using various techniques. This model has a type II realization involving a Calabi-Yau threefold with Enriques fibres, which we call the Enriques Calabi-Yau. By applying heterotic/type IIA duality, we compute the topological amplitudes in the fibre to all genera. It turns out that there are two different ways to do the computation that lead to topological couplings with different BPS content. One of them leads to the standard D0-D2 counting amplitudes, and from the other one we obtain information about bound states of D0-D4-D2 branes on the Enriques fibre. We also study the model using mirror symmetry and the holomorphic anomaly equations. We verify in this way the heterotic results for the D0-D2 generating functional for low genera and find closed expressions for the topological amplitudes on the total space in terms of modular forms, and up to genus four. This model turns out to be much simpler than the generic B-model and might be exactly solvable.Comment: 62 pages, v3: some results at genus 3 corrected, more typos correcte

    ABJM theory as a Fermi gas

    Full text link
    The partition function on the three-sphere of many supersymmetric Chern-Simons-matter theories reduces, by localization, to a matrix model. We develop a new method to study these models in the M-theory limit, but at all orders in the 1/N expansion. The method is based on reformulating the matrix model as the partition function of an ideal Fermi gas with a non-trivial, one-particle quantum Hamiltonian. This new approach leads to a completely elementary derivation of the N^{3/2} behavior for ABJM theory and N=3 quiver Chern-Simons-matter theories. In addition, the full series of 1/N corrections to the original matrix integral can be simply determined by a next-to-leading calculation in the WKB or semiclassical expansion of the quantum gas, and we show that, for several quiver Chern-Simons-matter theories, it is given by an Airy function. This generalizes a recent result of Fuji, Hirano and Moriyama for ABJM theory. It turns out that the semiclassical expansion of the Fermi gas corresponds to a strong coupling expansion in type IIA theory, and it is dual to the genus expansion. This allows us to calculate explicitly non-perturbative effects due to D2-brane instantons in the AdS background.Comment: 52 pages, 11 figures. v3: references, corrections and clarifications added, plus a footnote on the relation to the recent work by Hanada et a

    Solving the Topological String on K3 Fibrations

    Full text link
    We present solutions of the holomorphic anomaly equations for compact two-parameter Calabi-Yau manifolds which are hypersurfaces in weighted projective space. In particular we focus on K3-fibrations where due to heterotic type II duality the topological invariants in the fibre direction are encoded in certain modular forms. The formalism employed provides holomorphic expansions of topological string amplitudes everywhere in moduli space.Comment: 60 pages, 1 figure, With an appendix by Sheldon Kat

    Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon

    Get PDF
    Wave-induced extreme water levels in the Puerto Morelos fringing reef lagoon are investigated by means of a phase-resolving non-hydrostatic wave model (SWASH). This model solves the nonlinear shallow water equations including non-hydrostatic pressure. The one-dimensional version of the model is implemented in order to investigate wave transformation in fringing reefs. Firstly, the numerical model is validated with (i) laboratory experiments conducted on a physical model (Demirbilek et al., 2007)and (ii) field observations (Coronado et al., 2007). Numerical results show good agreement with both experimental and field data. The comparison against the physical model results, for energetic wave conditions, indicates that high- and low-frequency wave transformation is well reproduced. Moreover, extreme water-level conditions measured during the passage of Hurricane Ivan in Puerto Morelos are also estimated by the numerical tool. Subsequently, the model is implemented at different along-reef locations in Puerto Morelos. Extreme water levels, wave-induced setup, and infragravity wave energy are estimated inside the reef lagoon for different storm wave conditions (<i>H</i><sub>s</sub> >2 m). The numerical results revealed a strong correlation between the offshore sea-swell wave energy and the setup. In contrast, infragravity waves are shown to be the result of a more complex pattern which heavily relies on the reef geometry. Indeed, the southern end of the reef lagoon provides evidence of resonance excitation, suggesting that the reef barrier may act as either a natural flood protection morphological feature, or as an inundation hazard enhancer depending on the incident wave conditions

    Global Properties of Topological String Amplitudes and Orbifold Invariants

    Full text link
    We derive topological string amplitudes on local Calabi-Yau manifolds in terms of polynomials in finitely many generators of special functions. These objects are defined globally in the moduli space and lead to a description of mirror symmetry at any point in the moduli space. Holomorphic ambiguities of the anomaly equations are fixed by global information obtained from boundary conditions at few special divisors in the moduli space. As an illustration we compute higher genus orbifold Gromov-Witten invariants for C^3/Z_3 and C^3/Z_4.Comment: 34 pages, 3 figure

    Star Algebra Projectors

    Get PDF
    Surface states are open string field configurations which arise from Riemann surfaces with a boundary and form a subalgebra of the star algebra. We find that a general class of star algebra projectors arise from surface states where the open string midpoint reaches the boundary of the surface. The projector property of the state and the split nature of its wave-functional arise because of a nontrivial feature of conformal maps of nearly degenerate surfaces. Moreover, all such projectors are invariant under constant and opposite translations of their half-strings. We show that the half-string states associated to these projectors are themselves surface states. In addition to the sliver, we identify other interesting projectors. These include a butterfly state, which is the tensor product of half-string vacua, and a nothing state, where the Riemann surface collapses.Comment: 65 pages, 23 figures, LaTe

    Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories

    Full text link
    In these lectures I give a pedagogical presentation of some of the recent progress in supersymmetric Chern-Simons-matter theories, coming from the use of localization and matrix model techniques. The goal is to provide a simple derivation of the exact interpolating function for the free energy of ABJM theory on the three-sphere, which implies in particular the N^{3/2} behavior at strong coupling. I explain in detail part of the background needed to understand this derivation, like holographic renormalization, localization of path integrals, and large N techniques in matrix modelsComment: 73 pages, 7 figures. v2: references and clarifications added, misprints corrected. v3: more references, clarifications, and corrections. v4: more corrections and clarifications, final version to appear in J. Phys.

    Non-Perturbative Corrections and Modularity in N=1 Type IIB Compactifications

    Get PDF
    Non-perturbative corrections and modular properties of four-dimensional type IIB Calabi-Yau orientifolds are discussed. It is shown that certain non-perturbative alpha' corrections survive in the large volume limit of the orientifold and periodically correct the Kahler potential. These corrections depend on the NS-NS two form and have to be completed by D-instanton contributions to transform covariantely under symmetries of the type IIB orientifold background. It is shown that generically also the D-instanton superpotential depends on the two-form moduli as well as on the complex dilaton. These contributions can arise through theta-functions with the dilaton as modular parameter. An orientifold of the Enriques Calabi-Yau allows to illustrate these general considerations. It is shown that this compactification leads to a controlled four-dimensional N=1 effective theory due to the absence of various quantum corrections. Making contact to the underlying topological string theory the D-instanton superpotential is proposed to be related to a specific modular form counting D3, D1, D(-1) degeneracies on the Enriques Calabi-Yau.Comment: 35 page
    • …
    corecore