234 research outputs found
On the resonance eigenstates of an open quantum baker map
We study the resonance eigenstates of a particular quantization of the open
baker map. For any admissible value of Planck's constant, the corresponding
quantum map is a subunitary matrix, and the nonzero component of its spectrum
is contained inside an annulus in the complex plane, . We consider semiclassical sequences of eigenstates, such that the
moduli of their eigenvalues converge to a fixed radius . We prove that, if
the moduli converge to , then the sequence of eigenstates
converges to a fixed phase space measure . The same holds for
sequences with eigenvalue moduli converging to , with a different
limit measure . Both these limiting measures are supported on
fractal sets, which are trapped sets of the classical dynamics. For a general
radius , we identify families of eigenstates with
precise self-similar properties.Comment: 32 pages, 2 figure
Egorov property in perturbed cat map
We study the time evolution of the quantum-classical correspondence (QCC) for
the well known model of quantised perturbed cat maps on the torus in the very
specific regime of semi-classically small perturbations. The quality of the QCC
is measured by the overlap of classical phase-space density and corresponding
Wigner function of the quantum system called quantum-classical fidelity (QCF).
In the analysed regime the QCF strongly deviates from the known general
behaviour in particular it decays faster then exponential. Here we study and
explain the observed behavior of the QCF and the apparent violation of the QCC
principle.Comment: 12 pages, 7 figure
Dissipation time and decay of correlations
We consider the effect of noise on the dynamics generated by
volume-preserving maps on a d-dimensional torus. The quantity we use to measure
the irreversibility of the dynamics is the dissipation time. We focus on the
asymptotic behaviour of this time in the limit of small noise. We derive
universal lower and upper bounds for the dissipation time in terms of various
properties of the map and its associated propagators: spectral properties,
local expansivity, and global mixing properties. We show that the dissipation
is slow for a general class of non-weakly-mixing maps; on the opposite, it is
fast for a large class of exponentially mixing systems which include uniformly
expanding maps and Anosov diffeomorphisms.Comment: 26 Pages, LaTex. Submitted to Nonlinearit
Hyperbolic Scar Patterns in Phase Space
We develop a semiclassical approximation for the spectral Wigner and Husimi
functions in the neighbourhood of a classically unstable periodic orbit of
chaotic two dimensional maps. The prediction of hyperbolic fringes for the
Wigner function, asymptotic to the stable and unstable manifolds, is verified
computationally for a (linear) cat map, after the theory is adapted to a
discrete phase space appropriate to a quantized torus. The characteristic
fringe patterns can be distinguished even for quasi-energies where the fixed
point is not Bohr-quantized. The corresponding Husimi function dampens these
fringes with a Gaussian envelope centered on the periodic point. Even though
the hyperbolic structure is then barely perceptible, more periodic points stand
out due to the weakened interference.Comment: 12 pages, 10 figures, Submited to Phys. Rev.
Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives
The classical fields with fractional derivatives are investigated by using
the fractional Lagrangian formulation.The fractional Euler-Lagrange equations
were obtained and two examples were studied.Comment: 9 page
Renormalization of Quantum Anosov Maps: Reduction to Fixed Boundary Conditions
A renormalization scheme is introduced to study quantum Anosov maps (QAMs) on
a torus for general boundary conditions (BCs), whose number () is always
finite. It is shown that the quasienergy eigenvalue problem of a QAM for {\em
all} BCs is exactly equivalent to that of the renormalized QAM (with
Planck's constant ) at some {\em fixed} BCs that can
be of four types. The quantum cat maps are, up to time reversal, fixed points
of the renormalization transformation. Several results at fixed BCs, in
particular the existence of a complete basis of ``crystalline'' eigenstates in
a classical limit, can then be derived and understood in a simple and
transparent way in the general-BCs framework.Comment: REVTEX, 12 pages, 1 table. To appear in Physical Review Letter
Spectral problems in open quantum chaos
This review article will present some recent results and methods in the study
of 1-particle quantum or wave scattering systems, in the semiclassical/high
frequency limit, in cases where the corresponding classical/ray dynamics is
chaotic. We will focus on the distribution of quantum resonances, and the
structure of the corresponding metastable states. Our study includes the toy
model of open quantum maps, as well as the recent quantum monodromy operator
method.Comment: Compared with the previous version, misprints and typos have been
corrected, and the bibliography update
Rates of convergence of nonextensive statistical distributions to Levy distributions in full and half spaces
The Levy-type distributions are derived using the principle of maximum
Tsallis nonextensive entropy both in the full and half spaces. The rates of
convergence to the exact Levy stable distributions are determined by taking the
N-fold convolutions of these distributions. The marked difference between the
problems in the full and half spaces is elucidated analytically. It is found
that the rates of convergence depend on the ranges of the Levy indices. An
important result emerging from the present analysis is deduced if interpreted
in terms of random walks, implying the dependence of the asymptotic long-time
behaviors of the walks on the ranges of the Levy indices if N is identified
with the total time of the walks.Comment: 20 page
An Alternative Method for Solving a Certain Class of Fractional Kinetic Equations
An alternative method for solving the fractional kinetic equations solved
earlier by Haubold and Mathai (2000) and Saxena et al. (2002, 2004a, 2004b) is
recently given by Saxena and Kalla (2007). This method can also be applied in
solving more general fractional kinetic equations than the ones solved by the
aforesaid authors. In view of the usefulness and importance of the kinetic
equation in certain physical problems governing reaction-diffusion in complex
systems and anomalous diffusion, the authors present an alternative simple
method for deriving the solution of the generalized forms of the fractional
kinetic equations solved by the aforesaid authors and Nonnenmacher and Metzler
(1995). The method depends on the use of the Riemann-Liouville fractional
calculus operators. It has been shown by the application of Riemann-Liouville
fractional integral operator and its interesting properties, that the solution
of the given fractional kinetic equation can be obtained in a straight-forward
manner. This method does not make use of the Laplace transform.Comment: 7 pages, LaTe
Fractional Systems and Fractional Bogoliubov Hierarchy Equations
We consider the fractional generalizations of the phase volume, volume
element and Poisson brackets. These generalizations lead us to the fractional
analog of the phase space. We consider systems on this fractional phase space
and fractional analogs of the Hamilton equations. The fractional generalization
of the average value is suggested. The fractional analogs of the Bogoliubov
hierarchy equations are derived from the fractional Liouville equation. We
define the fractional reduced distribution functions. The fractional analog of
the Vlasov equation and the Debye radius are considered.Comment: 12 page
- …