527 research outputs found

    Finite-gap equations for strings on AdS_3 x S^3 x T^4 with mixed 3-form flux

    Full text link
    We study superstrings on AdS_3 x S^3 x T^4 supported by a combination of Ramond-Ramond and Neveu-Schwarz-Neveu-Schwarz three form fluxes, and construct a set of finite-gap equations that describe the classical string spectrum. Using the recently proposed all-loop S-matrix we write down the all-loop Bethe ansatz equations for the massive sector. In the thermodynamic limit the Bethe ansatz reproduces the finite-gap equations. As part of this derivation we propose expressions for the leading order dressing phases. These phases differ from the well-known Arutyunov-Frolov-Staudacher phase that appears in the pure Ramond-Ramond case. We also consider the one-loop quantization of the algebraic curve and determine the one-loop corrections to the dressing phases. Finally we consider some classical string solutions including finite size giant magnons and circular strings.Comment: 44 pages, 3 figures. v2: references and a discussion about perturbative results adde

    Finite size giant magnons in the SU(2) x SU(2) sector of AdS_4 x CP^3

    Full text link
    We use the algebraic curve and Luscher's mu-term to calculate the leading order finite size corrections to the dispersion relation of giant magnons in the SU(2) x SU(2) sector of AdS_4 x CP^3. We consider a single magnon as well as one magnon in each SU(2). In addition the algebraic curve computation is generalized to give the leading order correction for an arbitrary multi-magnon state in the SU(2) x SU(2) sector.Comment: 19 pages; v2, v3: references added, typos fixe

    The low-energy limit of AdS(3)/CFT2 and its TBA

    Get PDF
    We investigate low-energy string excitations in AdS3 × S3 × T4. When the worldsheet is decompactified, the theory has gapless modes whose spectrum at low energies is determined by massless relativistic integrable S matrices of the type introduced by Al. B. Zamolodchikov. The S matrices are non-trivial only for excitations with identical worldsheet chirality, indicating that the low-energy theory is a CFT2. We construct a Thermodynamic Bethe Ansatz (TBA) for these excitations and show how the massless modes’ wrapping effects may be incorporated into the AdS3 spectral problem. Using the TBA and its associated Y-system, we determine the central charge of the low-energy CFT2 to be c = 6 from calculating the vacuum energy for antiperiodic fermions — with the vacuum energy being zero for periodic fermions in agreement with a supersymmetric theory — and find the energies of some excited states

    First-principles derivation of the AdS/CFT Y-systems

    Full text link
    We provide a first-principles, perturbative derivation of the AdS5/CFT4 Y-system that has been proposed to solve the spectrum problem of N=4 SYM. The proof relies on the computation of quantum effects in the fusion of some loop operators, namely the transfer matrices. More precisely we show that the leading quantum corrections in the fusion of transfer matrices induce the correct shifts of the spectral parameter in the T-system. As intermediate steps we study UV divergences in line operators up to first order and compute the fusion of line operators up to second order for the pure spinor string in AdS5xS5. We also argue that the derivation can be easily extended to other integrable models, some of which describe string theory on AdS4, AdS3 and AdS2 spacetimes.Comment: 45 pages, 5 figures; v2: minor additions, JHEP versio

    Generalized cusp in AdS_4 x CP^3 and more one-loop results from semiclassical strings

    Get PDF
    We evaluate the exact one-loop partition function for fundamental strings whose world-surface ends on a cusp at the boundary of AdS_4 and has a "jump" in CP^3. This allows us to extract the stringy prediction for the ABJM generalized cusp anomalous dimension Gamma_{cusp}^{ABJM} (phi,theta) up to NLO in sigma-model perturbation theory. With a similar analysis, we present the exact partition functions for folded closed string solutions moving in the AdS_3 parts of AdS_4 x CP^3 and AdS_3 x S^3 x S^3 x S^1 backgrounds. Results are obtained applying to the string solutions relevant for the AdS_4/CFT_3 and AdS_3/CFT_2 correspondence the tools previously developed for their AdS_5 x S^5 counterparts.Comment: 48 pages, 2 figures, version 3, corrected misprints in formulas 2.12, B.86, C.33, added comment on verification of the light-like limi

    Classical integrability and quantum aspects of the AdS(3) x S(3) x S(3) x S(1) superstring

    Get PDF
    In this paper we continue the investigation of aspects of integrability of the type IIA AdS(3) x S(3) x S(3) x S(1) and AdS(3) x S(3) x T(4) superstrings. By constructing a one parameter family of flat connections we prove that the Green-Schwarz string is classically integrable, at least to quadratic order in fermions, without fixing the kappa-symmetry. We then compare the quantum dispersion relation, fixed by integrability up to an unknown interpolating function h(lambda), to explicit one-loop calculations on the string worldsheet. For AdS(3) x S(3) x S(3) x S(1) the spectrum contains heavy, as well as light and massless modes, and we find that the one-loop contribution differs depending on how we treat these modes showing that similar regularization ambiguities as appeared in AdS(4)/CFT(3) occur also here.Comment: 29 pages; v2: updated references and acknowledgmen

    Population policies and education: exploring the contradictions of neo-liberal globalisation

    Get PDF
    The world is increasingly characterised by profound income, health and social inequalities (Appadurai, 2000). In recent decades development initiatives aimed at reducing these inequalities have been situated in a context of increasing globalisation with a dominant neo-liberal economic orthodoxy. This paper argues that neo-liberal globalisation contains inherent contradictions regarding choice and uniformity. This is illustrated in this paper through an exploration of the impact of neo-liberal globalisation on population policies and programmes. The dominant neo-liberal economic ideology that has influenced development over the last few decades has often led to alternative global visions being overlooked. Many current population and development debates are characterised by polarised arguments with strongly opposing aims and views. This raises the challenge of finding alternatives situated in more middle ground that both identify and promote the socially positive elements of neo-liberalism and state intervention, but also to limit their worst excesses within the population field and more broadly. This paper concludes with a discussion outling the positive nature of middle ground and other possible alternatives

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation
    corecore