11 research outputs found

    LCA’s theory and practice: like ebony and ivory living in perfect harmony?

    Get PDF
    Life cycle assessment (LCA) is recognized as a trustworthy, scientific while understandable approach to address the environmental sustainability of human activities. It is applied for multiple uses in internal and external information supply and for decision support

    An unusual strategy for the anoxic biodegradation of phthalate

    No full text
    International audienceIn the past two decades, the study of oxygen-independent degradation of widely abundant aromatic compounds in anaerobic bacteria has revealed numerous unprecedented enzymatic principles. Surprisingly, the organisms, metabolites and enzymes involved in the degradation of o-phthalate (1,2-dicarboxybenzene), mainly derived from phthalate esters that are annually produced at the million ton scale, are sparsely known. Here, we demonstrate a previously unknown capacity of complete phthalate degradation in established aromatic compound-degrading, denitrifying model organisms of the genera Thauera, Azoarcus and ‘Aromatoleum’. Differential proteome analyses revealed phthalate-induced gene clusters involved in uptake and conversion of phthalate to the central intermediate benzoyl-CoA. Enzyme assays provided in vitro evidence for the formation of phthaloyl-CoA by a succinyl-CoA- and phthalate-specific CoA transferase, which is essential for the subsequent oxygen-sensitive decarboxylation to benzoyl-CoA. The extreme instability of the phthaloyl-CoA intermediate requires highly balanced CoA transferase and decarboxylase activities to avoid its cellular accumulation. Phylogenetic analysis revealed phthaloyl-CoA decarboxylase as a novel member of the UbiD-like, (de)carboxylase enzyme family. Homologs of the encoding gene form a phylogenetic cluster and are found in soil, freshwater and marine bacteria; an ongoing global distribution of a possibly only recently evolved degradation pathway is suggested

    Biodegradation of blend films PVA/PVC, PVA/PCL in soil and soil with landfill leachate

    No full text
    This study investigated the biodegradation of blends films of poly(vinyl alcohol)/poly(vinyl chloride) (PVA/PVC) and poly(vinyl alcohol)/poly(caprolactone) (PVA/PCL) blends films prepared with dimethylformamide under a variety of conditions by respirometry, spectrophotometry (FTIR), scanning electron microscopy (SEM), and contact angle. The films were buried in the garden soil and in the soil mixed with the landfill leachate for 120 days at 28ºC. Significant levels of biodegradation were achieved in fairly short incubation times in the soil. The results indicated that PVA was the most biodegradable film in the soil and in the soil with the leachate

    Reversible Deactivation Radical Polymerization of Vinyl Chloride

    No full text
    Poly(vinyl chloride) (PVC) is one of the higher consumed polymers (more than 40 million tons per year) and can only be prepared on an industrial scale by free-radical polymerization (FRP). Several intrinsic limitations of FRP have triggered interest in synthesizing this polymer by reversible deactivation radical polymerization (RDRP) methods. Despite the many achievements that have been made, the RDRP of nonactivated monomers, such as vinyl chloride (VC), presents several challenges to the scientific community. Several features of VC make its control by RDRP techniques particularly difficult. The most recent developments on RDRP of VC are critically discussed
    corecore