1,064 research outputs found
Universal Dynamical Steps in the Exact Time-Dependent Exchange-Correlation Potential
We show that the exact exchange-correlation potential of time-dependent
density-functional theory displays dynamical step structures that have a
spatially non-local and time non-local dependence on the density. Using
one-dimensional two-electron model systems, we illustrate these steps for a
range of non-equilibrium dynamical situations relevant for modeling of
photo-chemical/physical processes: field-free evolution of a non-stationary
state, resonant local excitation, resonant complete charge-transfer, and
evolution under an arbitrary field. Lack of these steps in usual approximations
yield inaccurate dynamics, for example predicting faster dynamics and
incomplete charge transfer
Charge-transfer in time-dependent density-functional theory via spin-symmetry-breaking
Long-range charge-transfer excitations pose a major challenge for
time-dependent density functional approximations. We show that
spin-symmetry-breaking offers a simple solution for molecules composed of
open-shell fragments, yielding accurate excitations at large separations when
the acceptor effectively contains one active electron. Unrestricted
exact-exchange and self-interaction-corrected functionals are performed on
one-dimensional models and the real LiH molecule within the pseudopotential
approximation to demonstrate our results.Comment: 5 pages, 4 figure
Semiclassical Electron Correlation in Density-Matrix Time-Propagation
Lack of memory (locality in time) is a major limitation of almost all present
time-dependent density functional approximations. By using semiclassical
dynamics to compute correlation effects within a density-matrix functional
approach, we incorporate memory, including initial-state dependence, as well as
changing occupation numbers, and predict more observables in strong-field
applications.Comment: 4.5 pages, 1 figur
Simultaneous multiwavelength observations of V404 Cygni during its 2015 June outburst decay strengthen the case for an extremely energetic jet-base
We present results of multiband optical photometry of the black hole X-ray
binary system V404 Cygni obtained using Wheaton College Observatory's 0.3m
telescope, along with strictly simultaneous INTEGRAL and Swift observations
during 2015 June 25.15--26.33 UT, and 2015 June 27.10--27.34 UT. These
observations were made during the 2015 June outburst of the source when it was
going through an epoch of violent activity in all wavelengths ranging from
radio to -rays. The multiwavelength variability timescale favors a
compact emission region, most likely originating in a jet outflow, for both
observing epochs presented in this work. The simultaneous INTEGRAL/Imager on
Board the Integral Satellite (IBIS) 20--40 keV light curve obtained during the
June 27 observing run correlates very strongly with the optical light curve,
with no detectable delay between the optical bands as well as between the
optical and hard X-rays. The average slope of the dereddened spectral energy
distribution was roughly flat between the - and -bands during the June
27 run, even though the optical and X-ray flux varied by 25 during
the run, ruling out an irradiation origin for the optical and suggesting that
the optically thick to optically thin jet synchrotron break during the
observations was at a frequency larger than that of -band, which is quite
extreme for X-ray binaries. These observations suggest that the optical
emission originated very close to the base of the jet. A strong H
emission line, probably originating in a quasi-spherical nebula around the
source, also contributes significantly in the -band. Our data, in
conjunction with contemporaneous data at other wavelengths presented by other
groups, strongly suggest that the jet-base was extremely compact and energetic
during this phase of the outburst.Comment: 15 pages, 2 tables, 5 figures. Accepted for publication in Ap
- …