1,536 research outputs found

    Piezomagnetic Quantum Dots

    Full text link
    We study the influence of deformations on magnetic ordering in quantum dots doped with magnetic impurities. The reduction of symmetry and the associated deformation from circular to elliptical quantum confinement lead to the formation of piezomagnetic quantum dots. The strength of elliptical deformation can be controlled by the gate voltage to change the magnitude of magnetization, at a fixed number of carriers and in the absence of applied magnetic field. We reveal a reentrant magnetic ordering with the increase of elliptical deformation and suggest that the piezomagnetic quantum dots can be used as nanoscale magnetic switches.Comment: 4 pages, 3 figure

    Quantum and Thermal Depinning of a String from a Linear Defect

    Full text link
    The problem of a massive elastic string depinning from a linear defect under the action of a small driving force is considered. To exponential accuracy the decay rate is calculated with the help of the instanton method; then, fluctuations of the quasiclassical solution are taken into account to determine the preexponential factor. The decay rate exhibits a kind of first order transition from quantum tunneling to thermal activation with vanishing crossover region. The model may be applied to describe nucleation in 2-dimensional first order quantum phase transitions.Comment: Revtex. 11 pages + 4 PS figures. Accepted for publication in PR

    Auger Spectroscopy of Hydrogenated Diamond Surfaces

    Get PDF
    An energy shift and a change of the line shape of the carbon core-valence-valence Auger spectra are observed for diamond surfaces after their exposure to an electron beam, or annealing at temperatures higher then 950 C. The effect is studied for both natural diamond crystals and chemical-vapor-deposited diamond films. A theoretical model is proposed for Auger spectra of hydrogenated diamond surfaces. The observed changes of the carbon Auger line shape are shown to be related to the redistribution of the valence-band local density of states caused by the hydrogen desorption from the surface. One-electron calculation of Auger spectra of diamond surfaces with various hydrogen coverages are presented. They are based on self-consistent wave functions and matrix elements calculated in the framework of the local-density approximation and the self-consistent linear muffin-tin orbital method with static core-hole effects taken into account. The major features of experimental spectra are explained

    The role of Helium-3 impurities in the stress induced roughening of superclimbing dislocations in solid Helium-4

    Full text link
    We analyze the stress induced and thermally assisted roughening of a forest of superclimbing dislocations in a Peierls potential in the presence of Helium-3 impurities and randomly frozen in static stresses. It is shown that the temperature of the dip TdT_d in the flow rate observed by Ray and Hallock (Phys.Rev. Lett. {\bf 105}, 145301 (2010)) is determined by the energy of the impurity activation from dislocation core. However, it is suppressed by, essentially, the logarithm of the impurity fraction. The width of the dip is determined by inhomogeneous fluctuations of the stresses and is shown to be much smaller than TdT_d.Comment: Submitted to the LT26-conference proceeding

    Lithium Experiment on Solar Neutrinos to Weight the CNO Cycle

    Full text link
    The measurement of the flux of beryllium neutrinos with the accuracy of about 10% and CNO neutrinos with the accuracy 30% will enable to find the flux of pp-neutrinos in the source with the accuracy better than 1% using the luminosity constraint. The future experiments on \nu e- scattering will enable to measure with very good accuracy the flux of beryllium and pp-neutrinos on the Earth. The ratio of the flux of pp-neutrinos on the Earth and in the source will enable to find with very good accuracy a mixing angle theta solar. Lithium detector has high sensitivity to CNO neutrinos and can find the contribution of CNO cycle to the energy generated in the Sun. This will be a stringent test of the theory of stellar evolution and combined with other experiments will provide a precise determination of the flux of pp-neutrinos in the source and a mixing angle theta solar. The work on the development of the technology of lithium experiment is now in progress.Comment: Minor corrections, one reference added, 11 pages, 2 figures, talk given at NANP 2003, Dubna, Russia, June 200

    Correlated metals and the LDA+U method

    Full text link
    While LDA+U method is well established for strongly correlated materials with well localized orbitals, its application to weakly correlated metals is questionable. By extending the LDA Stoner approach onto LDA+U, we show that LDA+U enhances the Stoner factor, while reducing the density of states. Arguably the most important correlation effects in metals, fluctuation-induced mass renormalization and suppression of the Stoner factor, are missing from LDA+U. On the other hand, for {\it moderately} correlated metals LDA+U may be useful. With this in mind, we derive a new version of LDA+U that is consistent with the Hohenberg-Kohn theorem and can be formulated as a constrained density functional theory. We illustrate all of the above on concrete examples, including the controversial case of magnetism in FeAl.Comment: Substantial changes. In particular, examples of application of the proposed functional are adde

    Diffraction based Hanbury Brown and Twiss interferometry performed at a hard x-ray free-electron laser

    Full text link
    We demonstrate experimentally Hanbury Brown and Twiss (HBT) interferometry at a hard X-ray Free Electron Laser (XFEL) on a sample diffraction patterns. This is different from the traditional approach when HBT interferometry requires direct beam measurements in absence of the sample. HBT analysis was carried out on the Bragg peaks from the colloidal crystals measured at Linac Coherent Light Source (LCLS). We observed high degree (80%) spatial coherence of the full beam and the pulse duration of the monochromatized beam on the order of 11 fs that is significantly shorter than expected from the electron bunch measurements.Comment: 32 pages, 10 figures, 2 table

    Spin Qubits in Germanium Structures with Phononic Gap

    Get PDF
    We propose qubits based on shallow donor electron spins in germanium structures with phononic gap. We consider a phononic crystal formed by periodic holes in Ge plate or a rigid cover / Ge layer / rigid substrate structure with gaps approximately a few GHz. The spin relaxation is suppressed dramatically, if the Zeeman frequency omegaZ is in the phononic gap, but an effective coupling between the spins of remote donors via exchange of virtual phonons remains essential. If omegaZ approaches to a gap edge in these structures, a long-range (limited by detuning of omegaZ) resonant exchange interaction takes place. We estimate that ratio of the exchange integral to the longitudinal relaxation rate exceeds 10(exp 5) and lateral scale of resonant exchange 0.1 mm. The exchange contribution can be verified under microwave pumping through oscillations of spin echo signal or through the differential absorption measurements. Efficient manipulation of spins due to the Rabi oscillations opens a new way for quantum information applications
    corecore