4,142 research outputs found
The resolved structure of the extragalactic supernova remnant SNR 4449-1
We present very long baseline interferometry (VLBI) observations of the
milliarcsecond-scale radio structure of the supernova remnant SNR 44491 in
the galaxy NGC 4449. This young and superluminous remnant was observed at 1.6
GHz (\,cm) with the European VLBI Network. The observations
confirm earlier identifications of this object with a supernova remnant (SNR)
while revealing a somewhat different morphology compared with the structure
reported by Bietenholz et al. from VLBI observations at 1.4 GHz. This
difference is discussed here in the context of structural sensitivity of both
observations. The 1.6 GHz image yields accurate estimates of the size (0.0422
arcsec 0.0285 arcsec and 0.8 0.5 pc) and age (55 yr) of
SNR 44491. With a total flux of 6.1 0.6 mJy measured in the VLBI
image, the historical lightcurve of the source can be well represented by a
power-law decay with a power index of 1.19 0.07. The SNR exhibits a
decline rate of the radio emission of 2.2 0.1 yr and a radio
luminosity of 1.74 10 erg s.Comment: 7 pages, 6 figures, MNRAS preprint, arXiv:1309.401
Anatomy of helical relativistic jets: The case of S5 0836+710
Helical structures are common in extragalactic jets. They are usually
attributed in the literature to periodical phenomena in the source (e.g.,
precession). In this work, we use VLBI data of the radio-jet in the quasar S5
0836+710 and hypothesize that the ridge-line of helical jets like this
corresponds to a pressure maximum in the jet and assume that the helically
twisted pressure maximum is the result of a helical wave pattern. For our
study, we use observations of the jet in S5 0836+710 at different frequencies
and epochs. The results show that the structures observed are physical and not
generated artificially by the observing arrays. Our hypothesis that the
observed intensity ridge-line can correspond to a helically twisted pressure
maximum is confirmed by our observational tests. This interpretation allows us
to explain jet misalignment between parsec and kiloparsec scales when the
viewing angle is small, and also brings us to the conclusion that
high-frequency observations may show only a small region of the jet flow
concentrated around the maximum pressure ridge-line observed at low
frequencies. Our work provides a potential explanation for the apparent
transversal superluminal speeds observed in several extragalactic jets by means
of transversal shift of an apparent core position with time.Comment: Accepted for publication in the Astrophysical Journa
Extragalactic Relativistic Jets and Nuclear Regions in Galaxies
Past years have brought an increasingly wider recognition of the ubiquity of
relativistic outflows (jets) in galactic nuclei, which has turned jets into an
effective tool for investigating the physics of nuclear regions in galaxies. A
brief summary is given here of recent results from studies of jets and nuclear
regions in several active galaxies with prominent outflows.Comment: 5 pages; contribution to ESO Astrophysical Symposia, "Relativistic
Astrophysics and Cosmology", eds. B. Aschenbach, V. Burwitz, G. Hasinger, B.
Leibundgut (Springer: Heidelberg 2006
Covariant Treatment of Neutrino Spin (Flavour) Conversion in Matter under the Influence of Electromagnetic Fields
Within the recently proposed Lorentz invariant formalism for description of
neutrino spin evolution in presence of an arbitrary electromagnetic fields
effects of matter motion and polarization are considered.Comment: Extended version of contribution to "Particle Physics on Boundary of
Millenniums" (Proceedings of the 9th Lomonosov Conference on Elementary
Particle Physics, World Scientific, Singapure
Multi-frequency investigation of the parsec- and kilo-parsec-scale radio structures in high-redshift quasar PKS 1402+044
We investigate the frequency-dependent radio properties of the jet of the
luminous high-redshift (z = 3.2) radio quasar PKS 1402+044 (J1405+0415) by
means of radio interferometric observations. The observational data were
obtained with the VLBI Space Observatory Programme (VSOP) at 1.6 and 5 GHz,
supplemented by other multi-frequency observations with the Very Long Baseline
Array (VLBA; 2.3, 8.4, and 15 GHz) and the Very Large Array (VLA; 1.4, 5, 15,
and 43 GHz). The observations span a period of 7 years. We find that the
luminous high-redshift quasar PKS 1402+044 has a pronounced "core-jet"
morphology from the parsec to the kilo-parsec scales. The jet shows a steeper
spectral index and lower brightness temperature with increasing distance from
the jet core. The variation of brightness temperature agrees well with the
shock-in-jet model. Assuming that the jet is collimated by the ambient magnetic
field, we estimate the mass of the central object as ~10^9 M_sun. The upper
limit of the jet proper motion of PKS 1402+044 is 0.03 mas/yr (~3c) in the
east-west direction.Comment: 9 pages, 6 figures
Solitons supported by singular spatial modulation of the Kerr nonlinearity
We introduce a setting based on the one-dimensional (1D) nonlinear
Schroedinger equation (NLSE) with the self-focusing (SF) cubic term modulated
by a singular function of the coordinate, |x|^{-a}. It may be additionally
combined with the uniform self-defocusing (SDF) nonlinear background, and with
a similar singular repulsive linear potential. The setting, which can be
implemented in optics and BEC, aims to extend the general analysis of the
existence and stability of solitons in NLSEs. Results for fundamental solitons
are obtained analytically and verified numerically. The solitons feature a
quasi-cuspon shape, with the second derivative diverging at the center, and are
stable in the entire existence range, which is 0 < a < 1. Dipole (odd) solitons
are found too. They are unstable in the infinite domain, but stable in the
semi-infinite one. In the presence of the SDF background, there are two
subfamilies of fundamental solitons, one stable and one unstable, which exist
together above a threshold value of the norm (total power of the soliton). The
system which additionally includes the singular repulsive linear potential
emulates solitons in a uniform space of the fractional dimension, 0 < D < 1. A
two-dimensional extension of the system, based on the quadratic nonlinearity,
is formulated too.Comment: Physical Review A, in pres
MODELING OF ADS-B MESSAGES TRANSMISSION VIA IRIDIUM SATELLITES COMMUNICATION CHANNEL
In this article the idea of ADS-B message transmission via communication channel by means of Iridium satellites was considered. The transmission model based on real parameters was created and investigated
- …