2,588 research outputs found

    Reversal and Termination of Current-Induced Domain Wall Motion via Magnonic Spin-Transfer Torque

    Full text link
    We investigate the domain wall dynamics of a ferromagnetic wire under the combined influence of a spin-polarized current and magnonic spin-transfer torque generated by an external field, taking also into account Rashba spin-orbit coupling interactions. It is demonstrated that current-induced motion of the domain wall may be completely reversed in an oscillatory fashion by applying a magnonic spin-transfer torque as long as the spin-wave velocity is sufficiently high. Moreover, we show that the motion of the domain wall may be fully terminated by means of the generation of spin-waves, suggesting the possibility to pin the domain-walls to predetermined locations. We also discuss how strong spin-orbit interactions modify these results.Comment: Accepted for publication in Phys. Rev.

    Strongly spin-polarized current generated in Zeeman-split unconventional superconductors

    Full text link
    We consider a thin-film normal metal/superconductor junction in the presence of an externally applied in-plane magnetic field for several symmetries of the superconducting order parameter. For p-wave superconductors, a strongly spin-polarized current emerges due to an interplay between the nodal structure of the superconducting order parameter, the existence or non-existence of zero-energy surface states, and the Zeeman-splitting of the bands which form superconductivity. Thus, the polarization depends strongly on the orbital symmetry of the superconducting state. Our findings suggest a mechanism for obtaining fully spin-polarized currents crucially involving zero-energy surface states, not present in s-wave superconductors.Comment: 5 pages, 5 figures. Accepted for publication in Phys. Rev.

    Chemical species spatial distribution and relationship to elevation and snow accumulation rate over the Greenland Ice Sheet

    Get PDF
    Major chemical species (Cl−, NO−3, SO2−4, Na+, K+, Mg2+, Ca2+) from 24 snowpits (sampled at a resolution of 3 cm, total 2995 samples) collected from northern, central, and southern Greenland were used for this investigation. The annual and seasonal (winter and summer) concentration of each chemical species was calculated and used to study the spatial distribution of chemical species over the central portion of the Greenland Ice Sheet. A two‐sided t‐distribution test (α = 0.05) suggests that concentrations of major chemical species in snow do not vary significantly over this portion of central Greenland. The relationship between chemical concentration and snow accumulation rate was investigated using annual data from two groups of snowpits: those from coastal sites (northern and southern Greenland); and those from high‐altitude inland sites (central Greenland). The snowpit data from a single group, when examined independently of the other group, show that chemical concentrations do not vary with snow accumulation rate. However, when data from the two groups are integrated into a single data set, pseudorelationships appear, with NO−3 concentration decreasing and Na+, K+, Mg2+, and Cl− increasing as snow accumulation rate increases. Therefore we suggest that it is improper to study the relationship between chemical concentration and snow accumulation rate by using data collected from different geographic sites. The relationship between elevation and chemical concentration was investigated using the same suite of annual data sets. We find that Cl−, Na+, and Mg2+ concentrations decrease, while NO−3 concentration increases, with increasing elevation on the Greenland Ice Sheet

    Identifying the odd-frequency superconducting state by a field-induced Josephson effect

    Full text link
    Superconducting order parameters that are odd under exchange of time-coordinates of the electrons constituting a Cooper-pair, are potentially of great importance both conceptually and technologically. Recent experiments report that such an odd-frequency superconducting {\it bulk} state may be realized in certain heavy-fermion compounds. While the Josephson current normally only flows between superconductors with the same symmetries with respect to frequency, we demonstrate that an exchange field may induce a current between diffusive even- and odd-frequency superconductors. This suggests a way to identify the possible existence of bulk odd-frequency superconductors.Comment: 10 pages, 7 figures. To appear in Physical Review

    Theory of superconducting and magnetic proximity effect in S∣\midF structures with inhomogeneous magnetization textures and spin-active interfaces

    Full text link
    We present a study of the proximity effect and the inverse proximity effect in a superconductor∣\midferromagnet bilayer, taking into account several important factors which mostly have been ignored in the literature so far. These include spin-dependent interfacial phase shifts (spin-DIPS) and inhomogeneous textures of the magnetization in the ferromagnetic layer, both of which are expected to be present in real experimental samples. Our approach is numerical, allowing us to access the full proximity effect regime. In Part I of this work, we study the superconducting proximity effect and the resulting local density of states in an inhomogeneous ferromagnet with a non-trivial magnetic texture. Our two main results in Part I are a study of how Bloch and N\'eel domain walls affect the proximity-induced superconducting correlations and a study of the superconducting proximity effect in a conical ferromagnet. The latter topic should be relevant for the ferromagnet Ho, which was recently used in an experiment to demonstrate the possibility to generate and sustain long-range triplet superconducting correlations. In Part II of this work, we investigate the inverse proximity effect with emphasis on the induced magnetization in the superconducting region as a result of the "leakage" from the ferromagnetic region. It is shown that the presence of spin-DIPS modify conclusions obtained previously in the literature with regard to the induced magnetization in the superconducting region. In particular, we find that the spin-DIPS can trigger an anti-screening effect of the magnetization, leading to an induced magnetization in the superconducting region with \textit{the same sign} as in the proximity ferromagnet.Comment: 16 pages, 18 figures. Accepted for publication in Phys. Rev.

    Tunneling currents in ferromagnetic systems with multiple broken symmetries

    Full text link
    SHORTENED ABSTRACT: A system exhibiting multiple simultaneously broken symmetries offers the opportunity to influence physical phenomena such as tunneling currents by means of external control parameters. In this paper, we consider the broken SU(2) (internal spin) symmetry of ferromagnetic systems coexisting with \textit{i)} the broken U(1) symmetry of superconductors and \textit{ii)} the broken spatial inversion symmetry induced by a Rashba term in a spin-orbit coupling Hamiltonian. In order to study the effect of these broken symmetries, we consider tunneling currents that arise in two different systems; tunneling junctions consisting of non-unitary spin-triplet ferromagnetic superconductors and junctions consisting of ferromagnets with spin-orbit coupling.Comment: Accepted for publication in Phys. Rev.

    Quinstant Dark Energy Predictions for Structure Formation

    Full text link
    We explore the predictions of a class of dark energy models, quinstant dark energy, concerning the structure formation in the Universe, both in the linear and non-linear regimes. Quinstant dark energy is considered to be formed by quintessence and a negative cosmological constant. We conclude that these models give good predictions for structure formation in the linear regime, but fail to do so in the non-linear one, for redshifts larger than one.Comment: 9 pages, 14 figures, "Accepted for publication in Astrophysics & Space Science

    Nontrivial interplay between superconductivity and spin-orbit coupling in non-centrosymmetric ferromagnets

    Full text link
    Motivated by the recent discoveries of ferromagnetic and non-centrosymmetric superconductors, we present a mean-field theory for a superconductor that \textit{both} lacks inversion symmetry and displays ferromagnetism, a scenario which is believed to be realized in UIr. We study the interplay between the order parameters to clarify how superconductivity is affected by the presence of ferromagnetism and spin-orbit coupling. One of our key findings is that the spin-orbit coupling seems to enhance both ferromagnetism and superconductivity in all spin channels. We discuss our results in the context of the heavy fermion superconductor UIr and analyze possible symmetries of the order parameter by the group theory method.Comment: 4 pages, 1 figure. Accepted for publication in Phys. Rev.

    Surface Morphology of Unused and Used HydromerR-Coated Intravenous Catheters

    Get PDF
    HydromerR-coated polyurethane (Erythroflex)R catheters, unused, or intravenously inserted for 2-20 days, were studied by scanning electron microscopy (SEM). Both unfixed and fixed (2% glutar-aldehyde in phosphate buffer), and air-or critical-point dried (CPD) specimens were investigated. The catheter segments were sputter-coated with approx. 20 nm gold and studied at an accelerating voltage of 20 kV. The specimens were examined for surface depositions, thickness and structure of the HydromerR layers, and occurrence of adhering and embedded bacteria. The outer HydromerR layer showed, in the un-used specimens, scratches and fissures, as well as adhering foreign bodies. In used specimens, the layer was swollen, with cracks (like dried earth ), and, occasionally , amorphous substances and coccoid bacteria were seen adhering. Damage to the layer, or even its total disappearance was also noted in some specimens. The inner (luminal) HydromerR layer was, in unused specimens, clean and slightly wavy. In used catheters, it was thicker, possibly swollen, with small, isolated or agglomerated protrusions, like a lunar landscape . Adhering platelets and amorphous substances were also occasionally seen. The results suggest that the HydromerR is a fragile material in both its dry and wet forms. Thus, the HydromerR-coated catheters should neither be stored in flexible packs, nor inserted by the Seldinger technique. The findings do not support the belief that the HydromerR-coating can prevent either thrombus formation, or intraluminal occlusion of the in-situ catheters

    Spin dynamics and level structure of quantum-dot quantum wells

    Full text link
    We have characterized CdS/CdSe/CdS quantum-dot quantum wells using time-resolved Faraday rotation (TRFR). The spin dynamics show that the electron g-factor varies as a function of quantum well width and the transverse spin lifetime of several nano-seconds is robust up to room temperature. As a function of probe energy, the amplitude of the TRFR signal shows pronounced resonances, which allow one to identify individual exciton transitions. While the TRFR data are inconsistent with the conduction and valence band level scheme of spherical quantum-dot quantum wells, a model in which broken spherical symmetry is taken into account captures the essential features.Comment: 5 pages, 3 figure
    • …
    corecore