33,024 research outputs found

    A Hybrid Multi-Distance Phase and Broadband Spatially Resolved Spectrometer and Algorithm for Resolving Absolute Concentrations of Chromophores in the Near-Infrared Light Spectrum

    Get PDF
    For resolving absolute concentration of tissue chromophores in the human adult brain with near-infrared spectroscopy it is necessary to calculate the light scattering and absorption, at multiple wavelengths with some depth resolution. To achieve this we propose an instrumentation configuration that combines multi-distance frequency and broadband spectrometers to quantify chromophores in turbid media by using a hybrid spatially resolved algorithm. Preliminary results in solid phantoms as well as liquid dynamic homogeneous and inhomogeneous phantoms and in-vivo muscle measurements showed encouraging results

    Charge-ice dynamics in the negative thermal expansion material Cd(CN)2_2

    Full text link
    We use variable-temperature (150--300\,K) single-crystal X-ray diffraction to re-examine the interplay between structure and dynamics in the ambient phase of the isotropic negative thermal expansion (NTE) material Cd(CN)2_2. We find strong experimental evidence for the existence of low-energy vibrational modes that involve off-centering of Cd2+^{2+} ions. These modes have the effect of increasing network packing density---suggesting a mechanism for NTE that is different to the generally-accepted picture of correlated Cd(C/N)4_4 rotation modes. Strong local correlations in the displacement directions of neighbouring cadmium centres are evident in the existence of highly-structured diffuse scattering in the experimental X-ray diffraction patterns. Monte Carlo simulations suggest these patterns might be interpreted in terms of a basic set of `ice-rules' that establish a mapping between the dynamics of Cd(CN)2_2 and proton ordering in cubic ice VII.Comment: 5 pages, 5 figures, submitted to PR

    Quantum and classical surface acoustic wave induced magnetoresistance oscillations in a 2D electron gas

    Full text link
    We study theoretically the geometrical and temporal commensurability oscillations induced in the resistivity of 2D electrons in a perpendicular magnetic field by surface acoustic waves (SAWs). We show that there is a positive anisotropic dynamical classical contribution and an isotropic non-equilibrium quantum contribution to the resistivity. We describe how the commensurability oscillations modulate the resonances in the SAW-induced resistivity at multiples of the cyclotron frequency. We study the effects of both short-range and long-range disorder on the resistivity corrections for both the classical and quantum non-equilibrium cases. We predict that the quantum correction will give rise to zero-resistance states with associated geometrical commensurability oscillations at large SAW amplitude for sufficiently large inelastic scattering times. These zero resistance states are qualitatively similar to those observed under microwave illumination, and their nature depends crucially on whether the disorder is short- or long-range. Finally, we discuss the implications of our results for current and future experiments on two dimensional electron gases.Comment: 16 pages, 8 figure

    X-ray photoelectron spectroscopy studies of non-stoichiometric superconducting NbB2+x

    Full text link
    Polycrystalline samples of NbB2+x with nominal composition (B/Nb) = 2.0, 2.1, 2.2, 2.3, 2.4 and 2.5 were studied by X-ray photoelectron spectroscopy (XPS). The spectra revealed Nb and B oxides on the surface of the samples, mainly B2O3 and Nb2O5. After Ar ion etching the intensity of Nb and B oxides decreased. The Nb 3d5/2 and B 1s core levels associated with the chemical states (B/Nb) were identified and they do not change with etching time. The Binding Energy of the Nb 3d5/2 and B 1s core levels increase as boron content increases, suggesting a positive chemical shift in the core levels. On the other hand, analysis of Valence Band spectra showed that the contribution of the Nb 4d states slightly decreased while the contribution of the B 2p(pi) states increased as the boron content increased. As a consequence, the electronic and superconducting properties were substantially modified, in good agreement with band-structure calculations.Comment: 10 pages, 7 figures, 1 tabl

    Dynamical Description of Spectral Flow in N=2 Superconformal Field Theories

    Get PDF
    We show how the spectral flow between the Neveu-Schwarz and Ramond sectors of N=2 superconformal field theories can be described in three dimensions in terms of the propagation of charged particles coupled to a a Chern-Simons gauge theory. Quantum mechanical mixing between the degenerate Chern-Simons vacua interpolates between the different boundary conditions of the two sectors and so provides a dynamical picture for the GSO-projection

    Nuclear magnetic resonance probes for the Kondo scenario for the 0.7 feature in semiconductor quantum point contact devices

    Full text link
    We propose a probe based on nuclear relaxation and Knight shift measurements for the Kondo scenario for the "0.7 feature" in semiconductor quantum point contact (QPC) devices. We show that the presence of a bound electron in the QPC would lead to a much higher rate of nuclear relaxation compared to nuclear relaxation through exchange of spin with conduction electrons. Furthermore, we show that the temperature dependence of this nuclear relaxation is very non-monotonic as opposed to the linear-T relaxation from coupling with conduction electrons. We present a qualitative analysis for the additional relaxation due to nuclear spin diffusion (NSD) and study the extent to which NSD affects the range of validity of our method. The conclusion is that nuclear relaxation, in combination with Knight shift measurements, can be used to verify whether the 0.7 feature is indeed due to the presence of a bound electron in the QPC.Comment: Published version. Appears in a Special Section on the 0.7 Feature and Interactions in One-Dimensional Systems. 16 page

    Mapping the magneto-structural quantum phases of Mn3O4

    Full text link
    We present temperature-dependent x-ray diffraction and temperature- and field-dependent Raman scattering studies of single crystal Mn3O4, which reveal the novel magnetostructural phases that evolve in the spinels due to the interplay between strong spin-orbital coupling, geometric frustration, and applied magnetic field. We observe a structural transition from tetragonal to monoclinic structures at the commensurate magnetic transition at T2=33K, show that the onset and nature of this structural transition can be controlled with an applied magnetic field, and find evidence for a field-tuned quantum phase transition to a tetragonal incommensurate or spin glass phase.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Lett; typos correcte

    Tunneling Anomaly in Superconductor above Paramagnetic Limit

    Full text link
    We study the tunneling density of states (DoS) in the superconducting systems driven by Zeeman splitting E_Z into the paramagnetic phase. We show that, even though the BCS gap disappears, superconducting fluctuations cause a strong DoS singularity in the vicinity of energies -E^* for electrons polarized along the magnetic field and E^* for the opposite polarization. The position of the singularity E^*=(1/2) (E_Z + \sqrt{E_Z^2- \Delta^2}) (where \Delta is BCS gap at E_Z=0) is universal. We found analytically the shape of the DoS for different dimensionality of the system. For ultrasmall grains the singularity has the form of the hard gap, while in higher dimensions it appears as a significant though finite dip. Our results are consistent with recent experiments in superconducting films.Comment: 4 pages, 2 .eps figures include

    Dual Response Models for the Fractional Quantum Hall Effect

    Full text link
    It is shown that the Jain mapping between states of integer and fractional quantum Hall systems can be described dynamically as a perturbative renormalization of an effective Chern-Simons field theory. The effects of mirror duality symmetries of toroidally compactified string theory on this system are studied and it is shown that, when the gauge group is compact, the mirror map has the same effect as the Jain map. The extrinsic ingredients of the Jain construction appear naturally as topologically non-trivial field configurations of the compact gauge theory giving a dynamical origin for the Jain hierarchy of fractional quantum Hall states.Comment: 8 pages LaTe

    Reconceptualising Personas Across Cultures: Archetypes, Stereotypes & Collective Personas in Pastoral Namibia

    Get PDF
    The paucity of projects where persona is the research foci and a lack of consensus on this artefact keep many reticent about its purpose and value. Besides crafting personas is expected to differ across cultures, which contrasts the advancements in Western theory with studies and progress in other sites. We postulate User-Created Personas reveal specific characteristics of situated contexts by allowing laypeople to design persona artefacts in their own terms. Hence analysing four persona sessions with an ethnic group in pastoral Namibia –ovaHerero– brought up a set of fundamental questions around the persona artefact regarding stereotypes, archetypes, and collective persona representations: (1) to what extent user depictions are stereotypical or archetypal? If stereotypes prime (2) to what degree are current personas a useful method to represent end-users in technology design? And, (3) how can we ultimately read accounts not conforming to mainstream individual persona descriptions but to collectives
    • …
    corecore