7,765 research outputs found
Particle Flow Calorimetry at the ILC
One of the most important requirements for a detector at the ILC is good jet
energy resolution. It is widely believed that the particle flow approach to
calorimetry is the key to achieving the goal of 0.3/sqrt(E[GeV]). This paper
describes the current performance of the PandoraPFA particle flow algorithm.
For 45 GeV jets in the Tesla TDR detector concept, the ILC jet energy
resolution goal is reached. At higher energies the jet energy resolution
becomes worse and can be described by the empirical expression: sigma_E/E ~
0.265/sqrt(E[GeV]) + 1.2x10^{-4}E[GeV].Comment: 5 pages, 2 .eps figures, to appear in Proc. LCWS06, Bangalore, March
  200
Analysis of clogging in constructed wetlands using magnetic resonance
In this work we demonstrate the potential of permanent magnet based magnetic resonance sensors to monitor and assess the extent of pore clogging in water filtration systems. The performance of the sensor was tested on artificially clogged gravel substrates and on gravel bed samples from constructed wetlands used to treat wastewater. Data indicate that the spin lattice relaxation time is linearly related to the hydraulic conductivity in such systems. In addition, within biologically active filters we demonstrate the ability to determine the relative ratio of biomass to abiotic solids, a measurement which is not possible using alternative techniques
Solution to the Equations of the Moment Expansions
We develop a formula for matching a Taylor series about the origin and an
asymptotic exponential expansion for large values of the coordinate. We test it
on the expansion of the generating functions for the moments and connected
moments of the Hamiltonian operator. In the former case the formula produces
the energies and overlaps for the Rayleigh-Ritz method in the Krylov space. We
choose the harmonic oscillator and a strongly anharmonic oscillator as
illustrative examples for numerical test. Our results reveal some features of
the connected-moments expansion that were overlooked in earlier studies and
applications of the approach
Production of a novel medium chain length Poly(3-hydroxyalkanoate) using unprocessed biodiesel waste and its evaluation as a tissue engineering scaffold
This study demonstrated the utilisation of unprocessed biodiesel waste as a carbon feedstock for Pseudomonas mendocina CH50, for the production of PHAs. A PHA yield of 39.5% CDM was obtained using 5% (v/v) biodiesel waste substrate. Chemical analysis confirmed that the polymer produced was poly(3-hydroxyhexanoate-co-3-hydroxyoctanoate-co-3- hydroxydecanoate-co-3-hydroxydodecanoate) or P(3HHx-3HO-3HD-3HDD). P(3HHx-3HO- 3HD-3HDD) was further characterised and evaluated for its use as a tissue engineering scaffold (TES). This study demonstrated that P(3HHx-3HO-3HD-3HDD) was biocompatible with the C2C12 (myoblast) cell line. In fact, the % cell proliferation of C2C12 on the P(3HHx-3HO-3HD-3HDD) scaffold was 72% higher than the standard tissue culture plastic confirming that this novel PHA was indeed a promising new material for soft tissue engineering
Novel scaffolds for tissue engineering of human skeletal muscles
Tissue engineering is a
multidisciplinary approach aimed at producing new
organs and tissues for implantation in order to
circumvent the limitations imposed by current
techniques such as surgical tissue transfer.
Structure begets function and highly ordered
skeletal muscle (SkM) consists of elongated,
multinucleate muscle cells (fibres) that are arranged
in bundles surrounded by connective tissue sheaths.
It is therefore of no surprise that tissue engineered
SkM complexes are often designed around fibre
containing scaffolds. This work is the natural
continuation of strategies introduced at TCES 200
P(3HB) Based Magnetic Nanocomposites: Smart Materials for Bone Tissue Engineering
The objective of this work was to investigate the potential application of Poly(3-hydroxybutyrate)/magnetic nanoparticles, P(3HB)/MNP, and Poly(3-hydroxybutyrate)/ferrofluid (P(3HB)/FF) nanocomposites as a smart material for bone tissue repair. The composite films, produced using conventional solvent casting technique, exhibited a good uniform dispersion of magnetic nanoparticles and ferrofluid and their aggregates within the P(3HB) matrix. The result of the static test performed on the samples showed that there was a 277% and 327% increase in Young's modulus of the composite due to the incorporation of MNP and ferrofluid, respectively. The storage modulus of the P(3HB)MNP and P(3HB)/FF was found to have increased to 186% and 103%, respectively, when compared to neat P(3HB). The introduction of MNP and ferrofluid positively increased the crystallinity of the composite scaffolds which has been suggested to be useful in bone regeneration. The total amount of protein absorbed by the P(3HB)/MNP and P(3HB)/FF composite scaffolds also increased by 91% and 83%, respectively, with respect to neat P(3HB). Cell attachment and proliferation were found to be optimal on the P(HB)/MNP and P(3HB)/FF composites compared to the tissue culture plate (TCP) and neat P(3HB), indicating a highly compatible surface for the adhesion and proliferation of the MG-63 cells. Overall, this work confirmed the potential of using P(3HB)/MNP and P(3HB)/FF composite scaffolds in bone tissue engineering
Composite scaffolds for cartilage tissue engineering based on natural polymers of bacterial origin, thermoplastic poly(3-hydroxybutyrate) and micro-fibrillated bacterial cellulose
Cartilage tissue engineering is an emerging therapeutic strategy that aims to regenerate damaged cartilage caused by disease, trauma, ageing or developmental disorder. Since cartilage lacks regenerative capabilities, it is essential to develop approaches that deliver the appropriate cells, biomaterials and signalling factors to the defect site. Materials and fabrication technologies are therefore critically important for cartilage tissue engineering in designing temporary, artificial extracellular matrices (scaffolds), which support 3D cartilage formation. Hence, this work aimed to investigate the use of poly(3-hydroxybutyrate)/microfibrillated bacterial cellulose (P(3HB)/MFC) composites as 3D-scaffolds for potential application in cartilage tissue engineering. The compression moulding/particulate leaching technique employed in the study resulted in good dispersion and a strong adhesion between the MFC and the P(3HB) matrix. Furthermore, the composite scaffold produced displayed better mechanical properties than the neat P(3HB) scaffold. On addition of 10, 20, 30 and 40 wt% MFC to the P(3HB) matrix, the compressive modulus was found to have increased by 35%, 37%, 64% and 124%, while the compression yield strength increased by 95%, 97%, 98% and 102% respectively with respect to neat P(3HB). Both cell attachment and proliferation were found to be optimal on the polymer-based 3D composite scaffolds produced, indicating a non-toxic and highly compatible surface for the adhesion and proliferation of mouse chondrogenic ATDC5 cells. The large pores sizes (60 - 83 µm) in the 3D scaffold allowed infiltration and migration of ATDC5 cells deep into the porous network of the scaffold material. Overall this work confirmed the potential of P(3HB)/MFC composites as novel materials in cartilage tissue engineering
- …
