91 research outputs found
On the Equation of State of Nuclear Matter in 158A GeV Pb+Pb Collisions
Within a hydrodynamical approach we investigate the sensitivity of single
inclusive momentum spectra of hadrons in 158A GeV Pb+Pb collisions to three
different equations of state of nuclear matter. Two of the equations of state
are based on lattice QCD results and include a phase transition to a
quark-gluon plasma. The third equation of state has been extracted from the
microscopic transport code RQMD under the assumption of complete local
thermalization. All three equations of state provide reasonable fits to data
taken by the NA44 and NA49 Collaborations. The initial conditions before the
evolution of the fireballs and the space-time evolution pictures differ
dramatically for the three equations of state when the same freeze-out
temperature is used in all calculations. However, the softest of the equations
of state results in transverse mass spectra that are too steep in the central
rapidity region. We conclude that the transverse particle momenta are
determined by the effective softness of the equation of state during the
fireball expansion.Comment: 4 pages, including 4 figures and 2 tables. For a PostScript file of
the manuscript, you can also goto http://t2.lanl.gov/schlei/eprint.htm
Microscopic study of freeze-out in relativistic heavy ion collisions at SPS energies
The freeze-out conditions in the light (S+S) and heavy (Pb+Pb) colliding
systems of heavy nuclei at 160 AGeV/ are analyzed within the microscopic
Quark Gluon String Model (QGSM). We found that even for the most heavy systems
particle emission takes place from the whole space-time domain available for
the system evolution, but not from the thin ''freeze-out hypersurface", adopted
in fluid dynamical models. Pions are continuously emitted from the whole volume
of the reaction and reflect the main trends of the system evolution. Nucleons
in Pb+Pb collisions initially come from the surface region. For both systems
there is a separation of the elastic and inelastic freeze-out. The mesons with
large transverse momenta, , are predominantly produced at the early stages
of the reaction. The low -component is populated by mesons coming mainly
from the decay of resonances. This explains naturally the decreasing source
sizes with increasing , observed in HBT interferometry. Comparison with
S+S and Au+Au systems at 11.6 AGeV/ is also presented.Comment: REVTEX, 26 pages incl. 9 figures and 2 tables, to be published in the
Physical Review
Pion and thermal photon spectra as a possible signal for a phase transition
We calculate thermal photon and neutral pion spectra in ultrarelativistic
heavy-ion collisions in the framework of three-fluid hydrodynamics. Both
spectra are quite sensitive to the equation of state used. In particular,
within our model, recent data for at AGeV can only be understood
if a scenario with a phase transition (possibly to a quark-gluon plasma) is
assumed. Results for at AGeV and at AGeV are also
presented.Comment: 14 pages, 5 figures separate
Synergic effects between N-heterocyclic carbene and chelating benzylidene-ether ligands toward the initiation step of Hoveyda-Grubbs type Ru complexes
Synergic effects between ancillary N-heterocyclic carbenes [(1,3-bis(2,4,6-trimethylphenyl)-1,3-imidazoline-2-ylidene or 1,3-bis(2,6-diisopropylphenyl)-1,3-imidazoline-2-ylidene] and chelating benzylidene ether ligands were investigated by studying initiation rates and kinetic profiles of Hoveyda-Grubbs (HG) type Ru complexes. A newly designed Ru-benzylidene-oxazinone precatalyst 4 was compared with Grela and Blechert complexes bearing modified isopropyloxy chelating leaving groups and with the standard HG complex to understand how the ancillary and the leaving ligands interact and influence the catalytic activity
- …