102 research outputs found

    Two Phase Collective Modes in Josephson Vortex Lattice in Intrinsic Josephson Junction Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Get PDF
    Josephson plasma excitations in the high TcT_c superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} have been investigated in a wide microwave frequency region (9.8 -- 75 GHz), in particular, in magnetic field applied parallel to the abab plane of the single crystal. In sharp contrast to the case for magnetic fields parallel to the c axis or tilted from the abab plane, it was found that there are two kinds of resonance modes, which are split in energy and possess two distinctly different magnetic field dependences. One always lies higher in energy than the other and has a shallow minimum at about 0.8 kOe, then increases linearly with magnetic field. On the other hand, another mode begins to appear only in a magnetic field (from a few kOe and higher) and has a weakly decreasing tendency with increasing magnetic field. By comparing with a recent theoretical model the higher energy mode can naturally be attributed to the Josephson plasma resonance mode propagating along the primitive reciprocal lattice vector of the Josephson vortex lattice, whereas the lower frequency mode is assigned to the novel phase collective mode of the Josephson vortex lattice, which has never been observed before.Comment: 11 pages and 10 figure

    Josephson Plasma Resonance in Solid and Glass Phases of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Full text link
    Vortex matter phases and phase transitions are investigated by means of Josephson plasma resonance in under-doped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} single crystals in a microwave frequency range between 19 and 70 GHz. Accompanied by the vortex lattice melting transition, a jump of the interlayer phase coherence extracted from the field dependence of the plasma frequency was observed. In the solid phase, the interlayer coherence little depends on field at a temperature region well below TcT_c while it gradually decreases as field increases toward the melting line up to just below TcT_c. As a result, the magnitude of the jump decreases with increasing temperature and is gradually lost in the vicinity of TcT_c. This indicates that the vortex lines formed in the vortex solid phase are thermally meandering and the phase transition becomes weak especially just below TcT_c.Comment: 5pages and 4 figures. Submitted to Physica C (Proceedings of Plasma2000, Sendai

    Monolithic superconducting emitter of tunable circularly polarized terahertz radiation

    Get PDF
    We propose an approach to control the polarization of terahertz (THz) radiation from intrinsic Josephson-junction stacks in single crystalline high-temperature superconductor Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta}. By monolithically controlling the surface current distributions in the truncated square mesa structure, we can modulate the polarization of the emitted THz wave as a result of two orthogonal fundamental modes excited inside the mesa. Highly polarized circular terahertz waves with a degree of circular polarization of more than 99% can be generated using an electrically controlled method. The emitted radiation has a high intensity and a low axial ratio (AR<1 dB). The intuitive results obtained from the numerical simulation based on the conventional antenna theory are consistent with the observed emission characteristics.Comment: Submitted to PRApplie

    Polarization Enhancement of terahertz radiation generated by intrinsic Josephson junctions in a truncated edge square Bi_{2}Sr_{2}CaCu_{2}O_{8+{\delta}} mesa

    Get PDF
    In this study, we investigated the terahertz radiation from a truncated edge square mesa structure made from a superconducting Bi_{2}Sr_{2}CaCu_{2}O_{8+{\delta}} . Using a commercial software, the polarization characteristics were determined, and introduced, while accounting for the skin effect. The axial ratio was enhanced in the simulation by performing a parametric study on the design.Comment: Proceedings of the 28th International Symposium on Superconductivity, ISS 2015, November 16-18, 2015, Tokyo, Japa

    Fluctuating pancake vortices revealed by dissipation of Josephson vortex lattice

    Get PDF
    In strongly anisotropic layered superconductors in tilted magnetic fields the Josephson vortex lattice coexists with the lattice of pancake vortices. Due to the interaction between them, the dissipation of the Josephson-vortex lattice occurs to be very sensitive to the presence of the pancake vortices. If the c-axis magnetic field is smaller then the corresponding lower critical field, the pancake stacks are not formed but the individual pancakes may exist in the fluctuational regime either near surface in large-size samples or in the central region for small-size mesas. We calculate the contribution of such fluctuating pancake vortices to the c-axis conductivity of the Josephson vortex lattice and compare the theoretical results with measurements on small mesas fabricated out of Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} crystals. A fingerprint of fluctuating pancakes is characteristic exponential dependence of the c-axis conductivity observed experimentally. Our results provide strong evidence of the existence of the fluctuating pancakes and their influence on the Josephson-vortex-lattice dissipation.Comment: 12 pages, 8 figures, Subm. Phys. Rev.
    corecore