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In strongly anisotropic layered superconductors in tilted magnetic fields, the Josephson vortex lattice coexists
with the lattice of pancake vortices. Due to the interaction between them, the dissipation of the Josephson vortex
lattice is very sensitive to the presence of the pancake vortices. If the c-axis magnetic field is smaller than the
corresponding lower critical field, the pancake stacks are not formed but the individual pancakes may exist in the
fluctuational regime either near the surface in large-size samples or in the central region for small-size mesas. We
calculate the contribution of such fluctuating pancake vortices to the c-axis conductivity of the Josephson vortex
lattice and compare the theoretical results with measurements on small mesas fabricated out of Bi2Sr2CaCu2O8+δ

crystals. A fingerprint of fluctuating pancakes is a characteristic exponential dependence of the c-axis conductivity
observed experimentally. Our results provide strong evidence of the existence of the fluctuating pancakes and
their influence on the Josephson vortex lattice dissipation.
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I. INTRODUCTION

Vortex physics in layered superconductors is extremely rich
and interesting. This is mostly related to the fact that the
magnetic field parallel to the layers penetrates in the form
of the Josephson vortices (JV’s),1 while the perpendicular
field creates the stacks of the pancake vortices (PV’s).2 In the
tilted magnetic field, the attractive interaction between JV’s
and PV’s (Ref. 3) leads to the creation of many unusual vortex
states: mixed chain-lattice states,4 JV’s decorated by PV’s,5

etc. (see as a review Ref. 6). The interaction between the PV
and JV lattices is revealed also in their dynamic properties.
The dynamics of the JV lattice in Bi2Sr2CaCu2O8+δ (Bi2212)
mesas has been explored by several experimental groups.7–12

Due to the weak intrinsic dissipation, the friction force acting
on the moving JV lattice is small. That is why even the presence
of a small amount of the PV stacks strongly affects the dynamic
of the JV’s. The physical reason is that the moving JV’s induce
displacements of the PV’s, which have large viscous friction
due to the normal cores. This strongly enhances the JV friction,
leading to a decrease of the measured c-axis resistivity of
the sample. Recently, this effect has been studied in detail in
Refs. 13 and 14. To the best of our knowledge, this is the only
known situation in which adding vortices to a superconductor
reduces its resistivity. Therefore, by studying the dynamic
properties of the JV lattice, we may obtain the information
about the presence of the PV’s.

In the present paper, we use this tool to study the penetration
of the PV’s in superconducting mesas of the Bi2212 intrinsic
Josephson junctions. If the magnetic field is applied exactly
along the layers, then the c-axis resistivity is governed by
the friction force acting on the moving JV lattice. When the

perpendicular component of magnetic field Hz is switched on,
the PV stack can enter into the sample when Hz reaches the
value of the perpendicular low critical field Hc

c1.15

The c-axis field penetration is rather special in the case
of layered superconductors with weak Josephson coupling
between the layers. Indeed, the field starts to penetrate in the
form of the PV’s created near the surface in the fluctuational
regime. The energy of a single PV near the surface has been
calculated in Ref. 16 (see also Ref. 17), and above a certain field
(somewhat lower than Hc

c1) it has a minimum at a distance of
the order of the London penetration depth λ from the surface.
In small-size samples with lateral dimensions comparable
with the London penetration depth, this energy minimum
appears in the center of the sample. The concentration of
the fluctuation PV’s is determined by this minimum energy,
which, in turn, depends on the perpendicular magnetic field.

The presence of these fluctuational PV’s increases the
friction of the JV’s, and then it may be directly monitored
by the measurement of the c-axis resistivity. We obtain
a very characteristic exponential dependence of the c-axis
conductivity versus Hz, reflecting the varying density of
the thermally activated PV’s near the surface or in the
center of small samples. This dependence is clearly observed
experimentally. These results demonstrate that the JV’s serve
as a perfect tool to detect the presence of the PV’s in the
fluctuational regime.

The behavior of the JV lattice has special features in the
mesas with lateral sizes of a few Josephson lengths used in
our experiments. In this case, bulk interactions favoring the
triangular lattice compete with edge interactions favoring the
rectangular lattice. Due to this competition, the JV lattice
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undergoes a series of structural phase transitions between the
triangular and rectangular configurations.18,19 The regions of
rectangular lattice dominate at large fields. Because the in-
plane current is absent in the rectangular lattice, its interaction
with PV’s is very weak. Therefore, the fluctuational PV’s
have a strong influence only on dissipation of the triangular
lattice. Due to commensurability effects, the c-axis resistivity
has pronounced oscillations as a function of the magnetic
field.10 The period of these oscillations changes from half
flux quantum per junction at small fields to one flux quantum
per junction at large fields,11,12 and the crossover field between
these regimes is proportional to the mesa width.19

The paper is organized as follows. In Sec. II, we describe
the theory of the effect. In particular, in Sec. II A we derive
the general formalism describing the response of the statistical
ensemble of PV’s in the static potential (created by interaction
with the surface) to the moving periodic potential (due to the
interaction with moving JV lattice). We provide the expression
for the resulting dissipation. In Sec. II B 1, we detail the
potential of the PV interaction with the surface in the presence
of the perpendicular field Hz. We also consider the potential
energy of a PV in finite-size samples with simple geometries
(strip and cylinder). The energy of the interaction between the
PV located near the surface and the dense lattice of the JV’s is
calculated in Sec. II C. We analyze the general expression for
the PV contribution to the JV lattice conductivity in Sec. II D.
In Sec. III, we present the experimental data on the c-axis
conductivity of Bi2Sr2CaCu2O8+δ mesas with different lateral
sizes in tilted magnetic field and compare the results with
theoretical predictions.

II. THEORY

A. Fluctuation pancake vortices in static and moving periodic
potentials: General consideration

We consider the geometry with the parallel-to-layers mag-
netic field directed along the x axis H‖ = Hx and, therefore,
the perpendicular current (along the c axis) will drive the JV
lattice along the y axis; see Fig. 1(a). The PV located at distance
x will interact with the surface (yz plane) and with a current
screening the perpendicular field Hz as well as with a moving
JV lattice. The first two contributions are described by the
static potential U0(x). The moving periodic potentials of the
JV lattice is Ũ (x) cos(ky − ωt), corresponding to the velocity
v = ω/k. This motion generates an electric field Ez = Hxv/c.

Therefore, we are interested in the behavior of the PV’s in the
two-dimensional potential

U (r,t) = U0(x) + Ũ (x) cos(ky − ωt). (1)

We start from a general consideration of a model in which the
PV’s are considered as an ensemble of particles with concen-
tration n in the external time-dependent potential U (r,t). The
particle current j (Ref. 20) and particle-conservation equation
are given by

j = −D

(
∇n + ∇U

T
n

)
, (2)

∂n

∂t
− D∇

(
∇n + ∇U

T
n

)
= 0, (3)

FIG. 1. (Color online) These schematic figures illustrate mesa
geometry and the interaction between the dense JV lattice and
fluctuational PV’s near the surface. (a) The right part shows the
outline of the structure fabricated from Bi2212 crystal to study c-axis
transport through the highlighted mesa region. The left part shows
definitions of axes and mesa sizes. (b) Three-dimensional sketch of the
JV lattice inside the junctions (front face) and the fluctuating PVs near
the surface (top face). (c) The gray-level plot of the cosine of the phase
difference between two neighboring layers that have periodic modu-
lation due to the JV lattice and perturbations due to randomly located
PV’s in two layers shown by open and closed circles. (d) The energy
profile of PV’s near the surface in the c-axis magnetic field close to
the lower-critical field. The PV density is enhanced near the potential
minimum. This highlighted region near the minimum of the potential
gives a dominating contribution to dissipation of the JV lattice.

where D is the diffusion constant. These equations describe the
particle density and current within a single layer and contain
only the in-plane gradients.

In the absence of the moving potential, the particle current
is naturally equal to zero and the equilibrium density n0(x) ∝
exp[−U0(x)/T ].21 Introducing the perturbation for the density
ν(r,t) and current due to the moving potential,

n(r,t) = n0(x)[1 + ν(r,t)], (4a)

j̃ = −D

(
∇ν + ∇Ũ

T

)
n0, (4b)

we have the following equation for the small perturbation:

∂ν

∂t
n0 − D∇ (n0∇ν) = D

T
∇(n0∇Ũ ). (5)

Using the complex presentation

Ũ (r,t) = Ũ (x)Re {exp [i(ky − ωt)]} ,

ν(r,t) = Re {νω(x) exp [i(ky − ωt)]} ,

we obtain the equation for the complex amplitude νω(x),

(−iηω + T k2)νω − T

n0
∇x(n0∇xνω),

= 1

n0
∇x(n0∇xŨ ) − k2Ũ , (6)

where η = T/D is the viscosity coefficient.
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Assuming that the frequency is small, we solve this
equation by iterations. The first iteration corresponds to
quasiequilibrium,

ν(0)
ω = − Ũ

T
, j(0) = 0.

The next iteration has to be found from the equation

D

(
1

n0
∇x

(
n0∇xν

(1)
ω

) − k2ν(1)
ω

)
= iω

Ũ

T
. (7)

Near the minimum of the potential, the equilibrium density
can be represented as

n0(x) = n00 exp

[
−Kx2

2T

]
,

n00 = nξ exp (−Umin/T ) .

We also assume that the typical scale of Ũ (x) variation is
larger than the confining length of the static potential

√
T/K

so that we can use the expansion near the minimum, Ũ (x) ≈
Ũ0 − F̃ x. In this case, Eq. (7) has a simple analytical solution,

ν(1)
ω = − iωŨ0

Dk2T
+ iωF̃ x

D(K + T k2)
, (8)

which gives the oscillating particle-current amplitudes

j̃x = − iωF̃

K + T k2
n0, (9a)

j̃y = ik
iωŨ

T k2
n0. (9b)

The energy dissipation in steady state can be evaluated as

W = −
∫

dx〈j∇U 〉 = η

∫
dx

〈
j2

n

〉
≈ η

2

∫
dx

|jx |2 + |jy |2
n0

.

(10)

Substituting currents (9a) and (9b), we finally obtain

W = ηω2

2

(
F̃ 2

(K + T k2)2
+ Ũ 2

T 2k2

) ∫
dx n0(x)

≈ ηω2

2
nξ exp

(
−Umin

T

)√
2πT

K

(
F̃ 2

(K + T k2)2
+ Ũ 2

T 2k2

)
.

(11)

This formula determines energy losses caused by an arbitrary
moving periodic potential near the minimum of the static
potential. We will use it to evaluate the contribution of the
fluctuating PV’s to the JV lattice conductivity. For this, in the
following sections, we will obtain explicit expressions for the
static and dynamic potentials.

B. Energy of the pancake vortex

1. Energy profile of the pancake vortex near the surface in
large-size samples

If the perpendicular magnetic field Hz is slightly lower
than Hc

c1, the PV stacks (Abrikosov vortices) do not penetrate
into the sample, but the PV’s can exist near the surface at the

fluctuation regime. The energy of the pancake vortex at the
distance x from the surface is given by16

U0(x) ≈ s
2
0

(4πλ)2 ln
x

ξ
− s
0Hz

4π

[
1 − exp

(
− x

λ

)]
= s
0

(
Hc

c1 − Hz

)
4π

+ s
2
0

(4πλ)2 ln
x

λ

+ s
0Hz

4π
exp

(
− x

λ

)
, (12)

where s is the distance between superconducting layers and
Hc

c1 ≈ [
0/(4πλ2)][ln(λ/ξ ) + 0.5] is the lower critical field.
Above a certain field, this potential will have a minimum at
distance ∼λ from the surface; see the schematic in Fig. 1(d).
Taking the derivative,

dU0

dx
= s
0

4πλ

[

0

4πλ2

λ

x
− Hz exp

(
− x

λ

)]
,

we find the condition for the minimum,

u exp(−u) = 
0

4πλ2Hz

,

with u = x/λ. The minimum exists if

Hz > Hs = e
0

4πλ2
. (13)

Above this field, the pancake energy at the minimum is
determined by the equations

Umin = s
0

4π

(
Hc

c1 − Hz

) + εp

[
ln (umin) + 1

umin

]
,

(14)
umin exp(−umin) = 
0

4πλ2Hz

,

where εp = s
2
0/ (4πλ)2 is the PV energy scale. As umin

roughly behaves as ln(4πλ2Hz/
0), the main dependence of
Umin on Hz is given by the first term, i.e., the minimum energy
approximately linearly decreases with the field. For Bi2212,
s ≈ 1.56 nm and we estimate the slope of this dependence as
dUmin/dHz ≈ −18.6 K/G.

Expanding the potential (12) near the minimum, U (x) =
Umin + K (x − xmin)2 /2, we evaluate the spring constant K as

K = d2U

dx2
= εp

λ2
aK,

(15)

aK = 1

umin
− 1

u2
min

≈ 1

ln h
,

with h = 4πλ2Hz/
0.
The condition of the vortex line formation is roughly Umin =

0. In such a case, the pancakes will accumulate near the surface
and form a vortex line. The magnetic field h1 at which this
happens is determined by the equations

u1 = ln h1 − ln u1, h1 = ln(κu1)

1 − exp(−u1)
,

which can be solved by the iterations

u1 ≈ ln h1 − ln ln h1, h1 ≈ ln κ + ln[ln(ln κ)].

Therefore, this field is only slightly larger than Hc
c1. The

Bean-Livingston barrier in layered superconductors with
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high anisotropy ratio is eliminated at sufficiently high
temperatures.22 In the field interval Hs < Hz < Hc

c1, we may
expect the accumulation of the fluctuating PV’s near the
surface, and their density would increase dramatically when
Hz approaches Hc

c1.

2. Energy of the pancake vortex in small-size mesas

The previous analysis considered the case of the samples
much larger than the London penetration depth λ. When their
dimensions are comparable with λ (which may be the case
for the small mesas), the minima of the PV’s energy near the
surfaces merge and the dependence (14) changes. We may
illustrate such a crossover in the case of the strip of the width
w. Using the results of Ref. 23, in which the vortex energy in
the narrow superconducting strip was calculated, we write the
expression for the energy of the pancake at the distance x from
the strip edge as

U0(x) = s
0
(
Hc

c1 − Hz

)
4π

+ s
2
0

(4πλ)2 ln

[
w

πλ
sin

(
πx

w

)]
+ s
0Hz

4π

cosh
(

x−w/2
λ

)
cosh

(
w
2λ

) . (16)

In contrast to wide strips, which have two energy minima near
the edges, the energy of the narrow strip at high fields has only
one minimum at the strip center. Two minima merge in the
center when the magnetic field reaches the typical value Hs0,

Hs0 = π
0

4w2
cosh

(
w

2λ

)
, (17)

and above this field the minimum energy is given by its value
at x = w/2,

Umin = s
0

4π

[
Hc

c1 − Hz

(
1 − 1

cosh(w/2λ)

)]
+ s
2

0

(4πλ)2 ln
( w

πλ

)
. (18)

At the field

Hs1 ≈ 
0

4πλ2

[
ln

(
w

πξ

)
+ 0.5

]
cosh(w/2λ)

cosh(w/2λ) − 1
, (19)

Umin reaches zero corresponding to the condition of fast
stack formation in the center. This field is slightly larger
than the lower critical field for the strip, H st

c1, which is
determined by the energy of the complete PV stack at
the center. In particular, for narrow strips (w < λ), Hs1 ≈
H st

c1 ≈ [2
0/(πw2)]{ln [w/(πξ )] + 0.5}; see, e.g., Ref. 24.
The formation of the PV stacks starts at the center when the
field Hs0 becomes smaller than H st

c1, giving the approximate
condition [

cosh

(
w

2λ

)
− 1

]
π2λ2

w2
< ln κ + 0.5.

For κ ≈ 100, this happens already for rather wide strips,
w � 9λ. Note that at this value, the finite-size correction to
the penetration field is small, H st

c1 ≈ Hc
c1.

Comparing the field dependences (14) and (18), we see
that in the narrow strips, the slope of the Umin versus Hz

dependence should be smaller by the geometrical factor

[1 − 1/ cosh (w/2λ)] < 1. Due to the temperature dependence
of λ, we may expect to observe the crossover between
these regimes for the strips with w � λ(0) by varying the
temperature. Note also that when the minimum U0(x) just
appears at the center of the strip at Hz = Hs0, the spring
constant K vanishes.

For mesas small in both the x and y directions, the
geometrical factor will be different, but a qualitative trend is
expected to be the same. To illustrate this case, we consider the
cylindrical geometry, which can also be treated analytically.
The energy of the pancake vortex at distance ρ from the center
of the mesa with radius R may be calculated in the same way
as the energy of the vortex in a small superconducting disk,
using an image method.25 In the result, we have

U0(ρ) = s
0
(
Hc

c1 − Hz

)
4π

+ s
2
0

(4πλ)2 ln

(
R2 − ρ2

Rλ

)
+ s
0Hz

4π

I0 (ρ/λ)

I0 (R/λ)
, (20)

where I0(z) is the modified Bessel function. The minimum
energy for the fluctuating pancakes is shifted to the center
of the mesa if the field is sufficiently large. With the help of
expression (20), we find that it occurs at fields

Hz > H
cyl
s0 = 
0

πR2
I0

(
R

λ

)
. (21)

The lower critical field of the cylinder H
cyl
c1 was calculated in

Ref. 26,

H
cyl
c1 = I0 (R/λ)

I0 (R/λ) − 1


0

4πλ2

[
ln κ + 0.5 − K0 (R/λ)

I0 (R/λ)

]
.

In the limit R 
 λ, the lower critical field is H
cyl
c1 =

[
0/(πR2)][ln (R/ξ ) + 0.38] and the regime of the accumu-
lation of the fluctuating pancakes at the center of the mesa
is always realized when the field Hz starts to approach H

cyl
c1 .

For κ ≈ 100, the condition H
cyl
s0 < H

cyl
c1 corresponds to the

mesas with R � 5.3λ. Note that the numerical value of the
critical diameter 2R ≈ 10.6λ is rather close to the critical
width w ≈ 9λ for the strip geometry. For smaller mesas at
fields just below H

cyl
c1 , the minimum energy is realized for the

PV located in the center,

Umin = U0(0) = s
0H
c
c1

4π
+ s
2

0

(4πλ)2 ln

(
R

λ

)
− s
0Hz

4π

[
1 − 1

I0 (R/λ)

]
, (22)

meaning that the slope of the Umin versus Hz dependence in
this regime should be smaller by the factor [1 − 1/I0(R/λ)],
comparing to the large mesas. This slope again may substan-
tially vary with temperature due to the temperature dependence
of λ. The overall behavior is similar to the stripe case. For the
cylindrical mesa with the same diameter as the stripe width,
the slope reduction is close and somewhat smaller than one for
the stripe.
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C. Interaction of a pancake vortex near the surface with the
dense Josephson vortex lattice

We consider the case of the dense JV lattice when the JV’s
cores overlap. This situation is realized when the in-plane
magnetic field B‖ is larger than the characteristic field Bcr =

0/(2πγ s2), where the anisotropy ratio γ = λc/λ determines
the Josephson length λJ = γ s.1 The interaction of the dense JV
lattice with a PV-stack lattice was first considered in Ref. 27.
The phase distribution for the triangular Josephson vortex
lattice at this high-field regime in the presence of pancake
vortices is determined by the equations

λ2
J �φn + sin[φn+1 − φn + φv,n+1 − φv,n − kH (y − v)]

+ sin[φn − φn−1 + φv,n − φv,n−1 − kH (y − v)] = 0,

(23)

where kH = 2πsB‖/
0 and φv,n are the pancake-vortex
phases. The parameter v describes displacement of the JV
lattice. In these equations, the π phase shift between the phase
differences in the neighboring junctions is already taken into
account.

We consider a single pancake in the layer n = 0 in a large-
size sample at a distance x0 from the surface,

φv,n = δn,0

(
arctan

y

x − x0
− arctan

y

x + x0

)
,

where the second term is the contribution from the mirror
image, which is required to satisfy the condition of vanishing
normal current at the surface ∂φv,n/∂x = 0 for x = 0. At high
in-plane fields, the Josephson current can be treated as a small
perturbation and Eq. (23) can be solved by iterations. The first
iteration for the zeroth layer obeys the equation

λ2
J �φ

(1)
0 = 2 cos φv,0 sin[kH (y − v)], (24)

where

cos[φv,0(r)] = r2 − x2
0√(

r2 + x2
0

)2 − 4x2x2
0

.

Without a PV, the first-order phase iteration is given
by φ

(1)
0 (r) = −2(λJ kH )−2 sin [kH (y − v)]. The solution of

Eq. (24) can be written as

φ
(1)
0 (r) = − 2

λ2
J k2

H

sin [kH (y − v)] + 1

πλ2
J

∫
dr′ ln

|r − r′|
r0

×{cos[φv,0(r′)] − 1} sin[kH (y ′ − v)], (25)

where the integration is in the limits −∞ < x ′,y ′ < ∞ and the
region x ′ < 0 accounts for the image contribution. The force
acting on the pancake is determined by the phase gradient at
its position,

fα = 2s
2
0

(4πλ)2 eαβz∇βφ
(1)
0 , (26)

where eαβγ is the Levi-Civita symbol (exyz = −eyxz = 1 and
eααz = 0). Computing the phase gradient and taking it at the
pancake position r = (x0,0), we obtain

∇xφ
(1)
0 (x0,0) = sin (kHv)

πλ2
J kH

Ix(kHx0), (27a)

FIG. 2. (Color online) Numerically computed integrals Ix(x0)
andIy(x0) = I ′

x(x0) defined by Eqs. (27c) and (27d), which determine
the force acting on the pancake vortex near the surface by the dense
Josephson vortex lattice.

∇yφ
(1)
0 (x0,0) = cos(kHv)

πλ2
J kH

Iy(kHx0), (27b)

Ix(x0) = −
∫

dr
x0 − x

(x0 − x)2 + y2

r2 − x2
0√(

r2 + x2
0 )2 − 4x2x2

0

cos y,

(27c)

Iy(x0) =
∫

dr
y

(x0 − x)2 + y2

r2 − x2
0√(

r2 + x2
0

)2 − 4x2x2
0

sin y.

(27d)

These integrals have the followings asymptotics: Iy(x0) →
2π , Ix(x0) → 0 for x0 → 0 and Iy(x0) → 0, Ix(x0) → 2π

for x0 → ∞. Moreover, as the force components have to be
derivatives of the same potential, one can demonstrate that
the integrals are connected as Iy(x) = I ′

x(x). Numerically
computed integrals are plotted in Fig. 2.

Finally, the main result of this section is the expression for
the potential energy of the PV in the presence of the JV lattice
[compare with Eq. (1)]:

Ũ (r) = 2s
2
0

(4πλ)2

Ix(kHx)

πλ2
J k2

H

cos(kHy). (28)

The interaction between the JV lattice and the PV near the
minimum of the surface potential is determined by the reduced
in-plane field,

h‖ ≡ kHλ = 2πsλB‖/
0. (29)

Taking typical values λ ≈ 0.3 μm at 70 K and B‖ = 1 T, we
estimate h‖ ≈ 1.42.

D. Contribution of fluctuating pancake vortices near the
surface to the conductivity of the Josephson vortex lattice

Interaction with the surface pancake vortices enhances
dissipation of the Josephson vortex lattice. An additional
channel of dissipation makes an additional contribution to
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the JV conductivity, σJV = σ
(0)
JV + σp, where σ

(0)
JV is the JV

conductivity in the absence of PV’s and σp is the excess
conductivity due to the interaction with pancakes. The cor-
responding pancake surface contribution, σp, can be evaluated
using the energy-dissipation formula (11),

W = σpE2
zLxLys = 2

ηω2

2
nξLy exp

(
−Umin

T

)√
2πT

K

×
(

F̃ 2(
K + T k2

H

)2 + Ũ 2

T 2k2
H

)
. (30)

Here W is the energy dissipated per single superconducting
layer, Lx and Ly are the dimensions of the crystal along
the corresponding axis, and the coefficient 2 comes from the
contribution from two yz surfaces.

Keeping in mind the relation between electric field and ve-
locity for the moving JV lattice Ez = vHx/c = (
0/2πcs)ω
and extracting parameters F̃ and Ũ from Eq. (28), we obtain
for the excess conductivity

σp =
(

2πcs


0

)2
ηnξ

Lxs
exp

(
−Umin

T

)

×
√

2πT

aKεp

4λ7

π2λ4
J h2

‖
G[T/εp,h‖], (31)

where

G[T̃ ,h‖] = [I ′
x(h‖umin)]2

(aK + T̃ h2
‖)2

+ I2
x (h‖umin)

T̃ 2h4
‖

,

umin ≈ ln h, and T̃ = T/εp is the dimensionless temperature.
The pancake viscosity, η, also determines the flux-flow resis-
tivity for the in-plane current, ρff = s
0B/(c2η). A natural
scale of conductivity is the pancake flux-flow conductivity at
field B = 
0/(4πλ2),

σff,λ = 4πλ2c2η

s
2
0

.

Using this scale, we can rewrite Eq. (31) in a somewhat more
transparent form,

σp = σff,λ
λ

πLx

s2nξ exp

(
−Umin

T

)

×
√

2πT

aKεp

λ4

λ4
J h2

‖
G[T/εp,h‖]. (32)

In spite of the rather complicated general σp(T ,Hx,Hz)
dependence (31), the main variation of σp just below Hc

c1 is
related with the change of the concentration of the fluctuating
pancakes. In samples with the lateral sizes larger than λ, this
leads to the very characteristic exponential σp dependence on
Hz,

σp ≈ A(Hx,T ) exp

(
s
0Hz

4πT

)
, (33)

and the dominating temperature dependence of the prefactor
is given by

A(Hx,T ) = Ã(Hx,T ) exp

(
− s
0H

c
c1

4πT

)
.

These are the easiest qualitative predictions to compare with
experiment. We remind the reader also that in small-size
mesas, the expression in the exponent of Eq. (33) acquires
a geometrical factor depending on mesa size, as described in
Sec. II B 2.

A more complicated issue is the dependence of the excess
conductivity on the in-plane magnetic field. The general
formula (32) significantly simplifies at high in-plane fields
h‖ � 1. In this regime, we obtain G[T̃ ,h‖] ≈ 4π2/(T̃ 2h4

‖) and

σp ≈ σff,λ

√
2π

aK

4πλ

Lx

s2nξ exp

(
−Umin

T

)(
εp

T

)3/2
λ4

λ4
J h6

‖
,

(34)

i.e., we expect that at high fields, the excess conductivity
rapidly decreases with increasing in-plane field ∝ 1/H 6

x .
We have considered the influence of the fluctuating pan-

cakes on the dense moving JV lattice only near the yz surfaces,
perpendicular to the in-plane magnetic field. Naturally, the
fluctuating PV’s also exist near the xz surfaces and they also
will contribute to dissipation. The JV lattice will displace them
mainly along the x axis. Accurate calculations for this case
are more complicated because one has to take into account
deformation of the JV lattice near the surface. However,
even without performing the calculation of this contribution,
it is evident that it will also be proportional to the PV’s
concentration, and therefore the dependence (33) will describe
it as well. This dependence also should describe the behavior
of the c-axis excess conductivity for smaller in-plane fields, in
the regime of a dilute JV lattice. In this regime, the fluctuating
PV’s enhance dissipation of individual JV’s, meaning that
σp ∝ 1/Hx .

III. EXPERIMENT

A. Experimental setup

Bi2212 single crystals grown by the traveling solvent
floating zone method were fabricated into mesas sandwiched
by two superconducting electrodes of Bi2212 [see Fig. 1(a)]
with a focused ion beam (FIB) machine SMI2050, SII
Nanotechnology Inc. The fabrication details are described in
Ref. 28. The studied samples listed in Table I include two
medium-size mesas with lateral sizes � 5 μm and four small
mesas with lateral sizes ∼1μm. Resistance of the mesa was

TABLE I. List of samples. L, W , and t denote length (⊥H), width
(‖H), and thickness (‖c) of the mesa, respectively; see Fig. 1(a). Hp

is the JV flow oscillation period observed experimentally. Note that
Hp is slightly different from 
0/sL due to the ambiguity of the mesa
dimensions. Units for dimensions, magnetic fields, and temperature
are μm, kOe, and K, respectively.

L W t Hp Tc

Br0552 5.0 4.9 0.16 2.6 84.7
Br0573 5.0 10.2 1.0 2.58 88.4
Br0640 1.1 1.13 0.25 11.5 84
Br0742 1.53 1.45 0.26 8.6 86
Br0746 0.8 2.06 0.5 17.25 86.5
Br0747 0.4 1.5 0.3 34.5 83.9
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measured with the four-probe method with either dc or ac
current excitation. For the ac excitation, the lock-in detection
was used for voltage measurements. External magnetic fields
H were applied by a split-pair superconducting magnet that
generates a horizontal magnetic field up to 80 kOe, and the
angle θ between the magnetic field and the ab plane (x axis)
was varied by rotating the sample probe with a precision
rotator. The perpendicular (c-axis) component of the magnetic
field Hz is given by H sin θ . In all plots presented here, Hz is
always swept from negative to positive, meaning that PV’s are
expelled from and introduced into the mesas in the negative
and positive Hz regions, respectively. Therefore, asymmetry
with respect to the sign of Hz in some plots may be caused by
hysteretic behavior.

B. Experimental results and discussion

The c-axis resistivity ρc in the vicinity of θ = 0 gives the
JV flow resistance. With increasing Hz, ρc suddenly drops
due to penetrating PV’s. Without taking fluctuating PV’s into
consideration, the value of the field when ρc drops should
correspond to the lower critical field Hc1 (corrected by the
demagnetization factor). The demagnetization factor of a small
mesa (L or W � 1 μm) is small because the thickness of the
whole crystal is about 10 μm for all samples and it is larger
than the width. For the midsize mesas (L or W � 5 − 10 μm),
due to the demagnetization effect, the field at the edge of the
junctions in the Meissner state should exceed the external field
by a factor ∼1.2–1.3. An example of ρc as a function of Hz

at different applied fields for one of the medium-size mesas
is plotted in Fig. 3(a). We see that the steep drop in ρc in the
low-field region is smeared with increasing parallel field H .
We focus here on the quantitative characterization of behavior
slightly below this drop.

Field behavior of small mesas has two important features.
First, when the magnetic field is aligned with the layers, due
to strong interaction with the edges, the dense JV lattice
has a rectangular structure at almost all fields and only
transforms into the triangular configuration in the vicinity
of fields corresponding to an integer number of fluxes per
junction, Hn = nHp with Hp = 
0/sL.18,19 Values of Hp for
different mesas are listed in Table I. The c-axis resistivity
has pronounced oscillations as a function of Hx with maxima
located near Hn.11,12 Secondly, when the c-axis magnetic field
is applied, penetration of the individual PV stacks can be
resolved. In the case of magnetic-field tilting from the ab

plane, PV stacks penetrating into the mesa strongly impede JV
flow along the ab plane, which causes sharp drops in ρc. With
increasing Hz, the separation between the drops decreases and
finally corresponds to the period of one flux quantum per mesa
area, 
0/LW , as shown in Fig. 3(b). These quasiperiodic
drops in ρc are naturally attributed to penetrations of the
individual PV stacks into the mesa. Even in the absence of
JV’s (H ‖ c), a stepwise increase in ρc (shown as a solid line)
indicated by arrows in Fig. 3(b) with a similar periodicity was
observed. These steps are attributed to additional interlayer
phase fluctuations caused by the penetrated PV stacks.28

Therefore, in small mesas, the c-axis resistivity has oscillating
dependences on both field components.

FIG. 3. (Color online) Typical dependences of the resistivity
ρc(Hz) in the midsize mesa Br0573 at 60 K (a) and small-size mesa
Br0746 at 70 K (b). (a) Sharp drop corresponds to penetration of the
PV stacks. We focus on the behavior below this drop. (b) In small-size
mesas, in addition to the initial sharp drop, quasiperiodic drops due to
penetration of the individual PV stacks are found. In the case of either
small magnitude of tilting magnetic field (2 kOe) or magnetic field
parallel to the c axis (solid line), stepwise changes in ρc indicated by
arrows are observed.

To quantify the additional dissipation of the JV lattice
due to penetration of fluctuational PV’s, we show the plots
of the excess c-axis conductivity σp(Hx,Hz) = σc(Hx,Hz) −
σc(Hx,0) as a function of the c-axis magnetic field Hz for
several samples at different temperatures in the following
figures. Here, σc(Hx,0) = 1/ρc(Hx,0) is the conductivity for
the magnetic field aligned with the layers at θ = 0 (Hz = 0).
Only the data at temperatures higher than T = 60 K are
shown because at low temperatures (below 50 K), the surface
barrier and bulk pinning for PV’s cause pronounced hysteresis
in the dependences ρc(Hz), which makes an analysis quite
complicated.

Figure 4 illustrates the evolution of the Hz dependence
of the excess conductivity σp with increasing field obtained
from data presented in Fig. 3(a). Other mesas show similar
behavior in the penetration region. In the figure, the predicted
exponential dependence (33) is plotted as a thick solid line for
each T . Since the constant A is the sole fitting parameter, the
slope of the semilog plot of the experimental data provides a
direct test for Eq. (33). The first general observation is that the
experimental data clearly show the existence of the exponential
regime just before the penetration of the perpendicular field
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FIG. 4. (Color online) The dependences of the excess conductiv-
ity on Hz for the sample Br0573 at T = 60 K in (a) 2 < H < 10
kOe and (b) 15 < H < 60 kOe. Solid lines describe the exponential
dependence (33). One can see that the data follow the theoretical
prediction.

into the mesas. This exponential increase spans up to five
orders of magnitude. The slopes of the ln(σp) versus Hz

curves are in good agreement with Eq. (33). The observation
of this regime provides strong evidence of generation of the
fluctuating PV near the sample surface.

There are several common features in the experimental data.
The slopes of dependences ln σp versus Hz remain independent
of the in-plane field only up to the typical fields ∼40 kOe,
in agreement with theory. At higher fields (not shown), the
slope starts to decrease and at the same time the experimental
dependencies σp(Hz) are no longer symmetric over ±Hz. At
such a high magnetic field, it is probably difficult to reliably
control the small Hz component. At small fields � 10 kOe,
the excess conductivity is only weakly dependent on the
field, while at higher fields it starts to decrease rapidly. This
behavior is most probably related with the crossover into the
dense-lattice regime. Figure 5 shows the dependence of the
preexponential factor A on the in-plane field Hx for mesas
Br0552 at T = 70 K and Br0573 at 60 K. One can see that
the decay at fields Hx > 6 kOe is close to the theoretical H−6

x

dependence given by Eq. (34).

1. Small mesas: Triangular versus rectangular JV lattice

An important feature of small-size mesas is the exis-
tence of regions of the rectangular vortex lattice at fields

FIG. 5. (Color online) The normalized preexponential factor A

in Eq. (33) as a function of in-plane field Hx for the mesa Br0552 at
70 K and Br0573 at 60 K. The factor is normalized by its value at
Hx = 20 kOe.

Hx > BcrL/(γ s). In this range with increasing magnetic field,
the JV lattice undergoes a series of structural phase transitions
between the triangular and rectangular configurations, with
triangular structures located around the fields nHp and
rectangular structure located around the fields (n + 1/2)Hp.
The widths of the triangular regions shrink with increasing
field.18,19 The triangular configuration is expected to have a
much stronger interaction with the PV’s than the rectangular
lattice because there are no in-plane currents in the latter state.

Figure 6 presents the Hz dependences of the excess
conductivity for two small-size mesas Br0746 and Br0742. The
panel (a) shows data for mesa Br0746 at 75 K for fields smaller
than Hp = 17.26 kOe. We can see that there is again a wide
range of exponential dependence and the slope d ln σp/dHz

agrees with theoretical predictions. Figure 6(b) shows the
excess conductivity for the small mesa Br0742 for three values
of field 4.3, 8.6, and 12.8 kOe almost corresponding to 0.5,
1.0, and 1.5Hp. At the last field, the rectangular lattice is
realized. We can see that while agrement with the predicted
dependence is very good for the first two values of the field,
for the last field the excess conductivity before penetration is
much smaller, which makes the transition much sharper. This
confirms that the fluctuating pancakes have a much weaker
influence on dissipation of the rectangular vortex lattice.

We finish this subsection with a small comment on the
oscillating behavior of the c-axis resistivity in small-size
mesas at larger Hz due to the penetrating individual PV
stacks illustrated in Fig. 3(b). This oscillating behavior is a
result of the competition between the two opposite factors.
On the one hand, the PV’s in the stacks directly contribute to
the dissipation of the JV lattice reducing the resistivity. On
the other hand, penetration of the magnetic flux inside the
mesa relaxes the Meissner currents near its surface, which
reduces the contribution coming from the fluctuating PV’s
and increases the resistivity. We can see that slightly above
the penetration field the resistivity increases, meaning that the
second mechanism actually prevails in this region. Moreover,
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FIG. 6. (Color online) The excess pancake conductivity for two
small-size mesas. (a) Data for the mesa Br0746 at 75 K for three
values of magnetic field smaller than Hp = 17.25 kOe. Theoretical
exponential dependences and corresponding preexponential factors
are also shown. (b) The excess conductivity for the sample Br0742
at 70 K also for three values of field. For the first two values 4.3 and
8.6 kOe corresponding to 0.5Hp and 1.0Hp , agreement with theory
is very good. There is no agreement for the last value, 12.8 kOe ≈
1.5Hp; the transition is much sharper and occurs at higher Hz. At this
value, the rectangular JV lattice is realized in the mesa, which is less
sensitive to the fluctuating PV’s.

the continuous increase of the resistivity for H = 10 and
14 kOe indicates that the full PV stack in the mesa center
is not formed at once but continuously builds within the finite
field range.

2. Evolution with increasing temperature and finite-size
effect in small mesas

Figure 7 presents the evolution of the σp versus Hz

dependences with increasing temperature at fixed field for
two small-size mesas. In both cases, the fields are close to
the corresponding values of Hp. We can see that for the
mesa Br0640 [panel (a)], these dependences agree with the
prediction for the large-size regime for temperatures 60, 70,
and 75 K, but the slope d ln σp/dHz becomes considerably
smaller for 80 K. For the smallest mesa Br0747 with the width
L = 0.4 μm [panel (b)], the slopes are smaller than predicted
by Eq. (33) for all temperatures and decrease with increasing
temperature. This behavior can be naturally explained by the
finite-size effect considered in Sec. II B 2. As the other size

FIG. 7. (Color online) Temperature evolution of the excess
conductivity for small-size mesas. (a) Excess-conductivity plots for
the small-size mesa Br0640 for the field 11.8 kOe corresponding to
the triangular lattice at four values of temperature, 60, 70, 75, and 80
K. Solid lines represent exponential dependences given by Eq. (33)
at temperatures for corresponding colors, whereas the broken lines
are given by Eq. (35) for the small-size regime. One can see that the
exponential dependencies agree with the prediction for the large-size
regime at 60, 70, and 75 K, but the slope is considerably smaller
at 80 K. (b) Data for the mesa Br0747 from 60 to 82 K at 3 T.
The exponential dependence for the small-size regime (35) shown by
broken lines describes the data very well.

of this mesa W is 3.75 times larger than the width L, we can
apply the strip approximation. In this case when the London
penetration depth λ becomes comparable with the mesa’s
smallest lateral size, the energy minimum of the PV, Umin, is
shifted to its center and the slope of Umin versus Hz decreases,
thus Hz must be substituted by Hz[1 − cosh−1(L/2λ)]:

σp ≈ A(Hx,T ) exp

{
s
0Hz

4πT

[
1 − cosh−1

(
L

2λ

)]}
. (35)

This means that from the slopes we can extract the temperature-
dependent λ. Figure 8(a) presents the temperature dependence
of λ−2 obtained in such a way. It shows an expected
linear dependence near Tc, λ−2 = λ−2

0 (1 − T/T MF
c ), with

the Ginzburg-Landau value λ0 = 0.1 μm and the mean-field
transition temperature T MF

c ≈ 86 K, which is 2 K higher than
the resistivity transition temperature for this mesa, Tc = 84 K.
Additional information can be obtained from the temperature
dependence of the preexponential factor A presented in the
right part of Fig. 8. As follows from Eq. (18), it has an
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FIG. 8. (Color online) (a) Temperature dependence of λ−2 ex-
tracted from slopes d ln σp/dHz for mesa Br0747 using the activation
energy, Eq. (18). (b) Arrhenius plot of the preexponential factor A for
the same mesa. The origin of the huge value of A0 is explained in the
text.

Arrhenius temperature dependence, A = A0 exp(−U0/kBT ),
with the activation energy U0 = [s
2

0/(4πλ0)2][ln(L/πξ ) +
0.5]. This agrees with experiment and the fit gives U0/kB =
1.08 × 104 K. This is consistent with the above value of λ0

if we assume ξ ≈ 50 nm at 75 K. Note also that the huge
value of A0 obtained from the fit, A0 ≈ 2 × 1054 (� cm)−1,
is, in fact, very reasonable because A0 contains the factor
exp(U0/kBT MF

c ) ≈ exp(126) ≈ 5 × 1054. The obtained value
of λ0 for our overdoped small mesa, however, is somewhat
smaller than the values reported in the literature.29 Note that
the mesa Br0640 also shows the same trend. However, for this

mesa the sizes W and L are close, so that the narrow strip
model is not applicable. An accurate description of this case
requires numerical analysis.

IV. CONCLUSIONS

Layered superconductors in magnetic fields are charac-
terized by complex interplay between the Josephson and
pancake vortices. In particular, dissipation of the Josephson
vortex lattice is proven to be extremely sensitive to the
presence of pancake vortices. We utilize this property to
probe the fluctuating pancake vortices. In the Meissner state,
in the c-axis magnetic field smaller than the lower critical
field, the pancake vortices cannot form the Abrikosov vortex
lines. In the fluctuational regime, however, the individual
pancake vortices may exist near the surface or inside small
samples. They lead to additional contribution to the c-axis
conductivity of the Josephson vortex lattice, which has a very
characteristic exponential dependence on the c-axis magnetic
field. While in mesas with lateral sizes significantly larger
than the London penetration depth λ the slope d ln(σp)/dHz

of this dependence is universal, in smaller mesas it acquires
the geometrical factor depending on the ratio size/λ. We
systematically studied the excess c-axis conductivity of the
JV lattice due to the fluctuating pancake vortices in mesas
fabricated out of Bi2Sr2CaCu2O8+δ crystals. The predicted
exponential dependence is clearly observed and its slope
agrees very well with the theoretical value. Analyzing the
temperature evolution of the slope in the mesa with the
smallest width and extracting the geometrical factor, we were
able to restore the temperature dependence of the London
penetration depth. These findings provide strong evidence for
the existence of the fluctuating pancakes in the Meissner state
and demonstrate that the Josephson-vortex lattice provides a
unique tool to probe them.
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