9 research outputs found

    Cerebral atrophy as outcome measure in short-term phase 2 clinical trials in multiple sclerosis

    Get PDF
    Cerebral atrophy is a compound measure of the neurodegenerative component of multiple sclerosis (MS) and a conceivable outcome measure for clinical trials monitoring the effect of neuroprotective agents. In this study, we evaluate the rate of cerebral atrophy in a 6-month period, investigate the predictive and explanatory value of other magnetic resonance imaging (MRI) measures in relation to cerebral atrophy, and determine sample sizes for future short-term clinical trials using cerebral atrophy as primary outcome measure

    BG-12 reduces evolution of new enhancing lesions to T1-hypointense lesions in patients with multiple sclerosis

    Get PDF
    BG-12, an immunomodulatory agent, reduces frequency of new gadolinium-enhancing (Gd+) lesions in relapsing multiple sclerosis (MS). This study reports the effect of 240 mg BG-12 orally three times daily (tid) for 24 weeks on the evolution of new Gd+ lesions to T1-hypointense lesions. Brain magnetic resonance imaging (MRI) scans from patients in placebo and 240 mg BG-12 tid arms of a phase 2b study were examined retrospectively. Included patients had at least one new Gd+ lesion from weeks 4 to 12. Week 24 scans were analyzed for number and proportion of new Gd+ lesions that evolved to T1-hypointense lesions. Eighteen patients receiving BG-12 and 38 patients receiving placebo were included in the analysis. The analysis tracked 147 new Gd+ lesions in patients from the BG-12 group and 221 Gd+ lesions in patients from the placebo group. The percentage of Gd+ lesions that evolved to T1-hypointense lesions was 34% lower with BG-12 treatment versus placebo (29%, BG-12; 44%, placebo; odds ratio 0.51; 95% confidence interval 0.43, 0.61; p > 0.0001). In addition to reducing frequency of new Gd+ lesions, BG-12 significantly reduced probability of their evolution to T1-hypointense lesions in patients with MS compared with placebo

    Biomarkers of Multiple Sclerosis

    Get PDF
    The search for an ideal multiple sclerosis biomarker with good diagnostic value, prognostic reference and an impact on clinical outcome has yet to be realized and is still ongoing. The aim of this review is to establish an overview of the frequent biomarkers for multiple sclerosis that exist to date. The review summarizes the results obtained from electronic databases, as well as thorough manual searches. In this review the sources and methods of biomarkers extraction are described; in addition to the description of each biomarker, determination of the prognostic, diagnostic, disease monitoring and treatment response values besides clinical impact they might possess. We divided the biomarkers into three categories according to the achievement method: laboratory markers, genetic-immunogenetic markers and imaging markers. We have found two biomarkers at the time being considered the gold standard for MS diagnostics. Unfortunately, there does not exist a single solitary marker being able to present reliable diagnostic value, prognostic value, high sensitivity and specificity as well as clinical impact. We need more studies to find the best biomarker for MS.publishersversionPeer reviewe

    Nonconventional MRI and microstructural cerebral changes in multiple sclerosis

    No full text
    MRI has become the most important paraclinical tool for diagnosing and monitoring patients with multiple sclerosis (MS). However, conventional MRI sequences are largely nonspecific in the pathology they reveal, and only provide a limited view of the complex morphological changes associated with MS. Nonconventional MRI techniques, such as magnetization transfer imaging (MTI), diffusion-weighted imaging (DWI) and susceptibility-weighted imaging (SWI) promise to complement existing techniques by revealing more-specific information on microstructural tissue changes. Past years have witnessed dramatic advances in the acquisition and analysis of such imaging data, and numerous studies have used these tools to probe tissue alterations associated with MS. Other MRI-based techniques-such as myelin-water imaging, 23 Na imaging, magnetic resonance elastography and magnetic resonance perfusion imaging-might also shed new light on disease-associated changes. This Review summarizes the rapid technical progress in the use of MRI in patients with MS, with a focus on nonconventional structural MRI. We critically discuss the present utility of nonconventional MRI in MS, and provide an outlook on future applications, including clinical practice. This information should allow appropriate selection of advanced MRI techniques, and facilitate their use in future studies of this disease

    Regenerating CNS myelin — from mechanisms to experimental medicines

    No full text
    Although the core concept of remyelination - based on the activation, migration, proliferation and differentiation of CNS progenitors - has not changed over the past 20 years, our understanding of the detailed mechanisms that underlie this process has developed considerably. We can now decorate the central events of remyelination with a host of pathways, molecules, mediators and cells, revealing a complex and precisely orchestrated process. These advances have led to recent drug-based and cell-based clinical trials for myelin diseases and have opened up hitherto unrecognized opportunities for drug-based approaches to therapeutically enhance remyelination

    Nonconventional MRI and microstructural cerebral changes in multiple sclerosis

    No full text

    The Role of Advanced Magnetic Resonance Imaging Techniques in Multiple Sclerosis Clinical Trials

    No full text
    corecore