687 research outputs found

    Two extremely metal-poor emission-line galaxies in the Sloan Digital Sky Survey

    Full text link
    We present spectroscopic observations with the 3.6m ESO telescope of two emission-line galaxies, J2104-0035 and J0113+0052, selected from the Data Release 4 (DR4) of the Sloan Digital Sky Survey (SDSS). From our data we determine the oxygen abundance of these systems to be respectively 12+logO/H = 7.26+/-0.03 and 7.17+/-0.09, making them the two most metal-deficient galaxies found thus far in the SDSS and placing them among the five most metal-deficient emission-line galaxies ever discovered. Their oxygen abundances are close to those of the two most metal-deficient emission-line galaxies known, SBS0335-052W with 12+logO/H = 7.12+/-0.03 and I Zw 18 with 12+logO/H = 7.17+/-0.01.Comment: 5 pages, 3 figures. Accepted for publication in Astronomy and Astrophysic

    Luminous Blue Variable Stars In The Two Extremely Metal-Deficient Blue Compact Dwarf Galaxies DDO 68 and PHL 293B

    Full text link
    We present photometric and spectroscopic observations of two luminous blue variable (LBV) stars in two extremely metal-deficient blue compact dwarf (BCD) galaxies, DDO 68 with 12+logO/H = 7.15 and PHL 293B with 12+logO/H = 7.72. These two BCDs are the lowest-metallicity galaxies where LBV stars have been detected, allowing to study the LBV phenomenon in the extremely low metallicity regime, and shedding light of the evolution of the first generation of massive stars born from primordial gas. We find that the strong outburst of the LBV star in DDO 68 occurred sometime between February 2007 and January 2008. We have compared the properties of the broad line emission in low-metallicity LBVs with those in higher metallicity LBVs. We find that, for the LBV star in DDO 68, broad emission with a P Cygni profile is seen in both H and He I emission lines. On the other hand, for the LBV star in PHL 293B, P Cygni profiles are detected only in H lines. For both LBVs, no heavy element emission line such as Fe II was detected. The Halpha luminosities of LBV stars in both galaxies are comparable to the one obtained for the LBV star in NGC 2363 (Mrk 71) which has a higher metallicity 12+logO/H = 7.89. On the other hand, the terminal velocities of the stellar winds in both low-metallicity LBVs are high, ~800 km/s, a factor of ~4 higher than the terminal velocities of the winds in high-metallicity LBVs. This suggests that stellar winds at low metallicity are driven by a different mechanism than the one operating in high-metallicity winds.Comment: 26 pages, 5 figures, accepted for publication in the Astrophysical Journa

    Near-infrared spectroscopy of a large sample of low-metallicity blue compact dwarf galaxies

    Full text link
    We present near-infrared (NIR) spectroscopic observations in the wavelength range 0.90-2.40mum of eighteen low-metallicity blue compact dwarf (BCD) galaxies and six HII regions in spiral and interacting galaxies. Hydrogen and helium emission lines are detected in all spectra, while H2 and iron emission lines are detected in most spectra. The NIR data for all objects have been supplemented by optical spectra. In all objects, except perhaps for the highest metallicity ones, we find that the extinctions A(V) in the optical and NIR ranges are similar, implying that the NIR hydrogen emission lines in low-metallicity BCDs do not reveal more star formation than seen in the optical. We conclude that emission-line spectra of low-metallicity BCDs in the 0.36-2.40mum wavelength range are emitted by a relatively transparent ionized gas. The H2 emission line fluxes can be accounted for by fluorescence in most of the observed galaxies. We find a decrease of the H2 2.122mum emission line relative to the Brgamma line with increasing ionization parameter. This indicates an efficient destruction of H2 by the stellar UV radiation. The intensities of the [FeII] 1.257mum and 1.644mum emission lines in the spectra of all galaxies, but one, are consistent with the predictions of Cloudy stellar photoinization models. There is thus no need to invoke shock excitation for these lines, and they are not necessarily shock indicators in low-metallicity high-excitation BCDs. The intensity of the HeI 2.058mum emission line is lower in high-excitation BCDs with lower neutral gas column densities and higher turbulent motions.Comment: 11 pages, 6 figures, accepted for publication in MNRAS. arXiv admin note: text overlap with arXiv:1104.081

    MMT observations of new extremely metal-poor emission-line galaxies in the Sloan Digital Sky Survey

    Full text link
    We present 6.5-meter MMT spectrophotometry of 20 H II regions in 13 extremely metal-poor emission-line galaxies selected from the Data Release 5 of the Sloan Digital Sky Survey to have [O III] 4959/Hbeta < 1 and [N II] 6583/Hbeta < 0.05. The electron temperature-sensitive emission line [O III] 4363 is detected in 13 H II regions allowing a direct abundance determination. The oxygen abundance in the remaining H II regions is derived using a semi-empirical method. The oxygen abundance of the galaxies in our sample ranges from 12+logO/H ~ 7.1 to ~ 7.8, with 10 H II regions having an oxygen abundance lower than 7.5. The lowest oxygen abundances, 12+logO/H = 7.14+/-0.03 and 7.13+/-0.07, are found in two H II regions of the blue compact dwarf galaxy SDSSJ0956+2849=DDO 68, making it the second most-metal deficient emission-line galaxy known, after SBS 0335-052W.Comment: 28 pages, 3 figures. Accepted for publication in the Astrophysical Journa

    Primordial 4He abundance: a determination based on the largest sample of HII regions with a methodology tested on model HII regions

    Full text link
    We verified the validity of the empirical method to derive the 4He abundance used in our previous papers by applying it to CLOUDY (v13.01) models. Using newly published HeI emissivities, for which we present convenient fits as well as the output CLOUDY case B hydrogen and HeI line intensities, we found that the empirical method is able to reproduce the input CLOUDY 4He abundance with an accuracy of better than 1%. The CLOUDY output data also allowed us to derive the non-recombination contribution to the intensities of the strongest Balmer hydrogen Halpha, Hbeta, Hgamma, and Hdelta emission lines and the ionisation correction factors for He. With these improvements we used our updated empirical method to derive the 4He abundances and to test corrections for several systematic effects in a sample of 1610 spectra of low-metallicity extragalactic HII regions, the largest sample used so far. From this sample we extracted a subsample of 111 HII regions with Hbeta equivalent width EW(Hbeta) > 150A, with excitation parameter x = O^{2+}/O > 0.8, and with helium mass fraction Y derived with an accuracy better than 3%. With this subsample we derived the primordial 4He mass fraction Yp = 0.254+/-0.003 from linear regression Y-O/H. The derived value of Yp is higher at the 68% confidence level (CL) than that predicted by the standard big bang nucleosynthesis (SBBN) model, possibly implying the existence of different types of neutrino species in addition to the three known types of active neutrinos. Using the most recently derived primordial abundances D/H = (2.60+/-0.12)x10^{-5} and Yp = 0.254+/-0.003 and the chi^2 technique, we found that the best agreement between abundances of these light elements is achieved in a cosmological model with baryon mass density Omegab h^2 = 0.0234+/-0.0019 (68% CL) and an effective number of the neutrino species Neff = 3.51+/-0.35 (68% CL).Comment: 23 pages, 14 figures, accepted for publication in Astronomy and Astrophysic

    The chemical composition of metal-poor emission-line galaxies in the Data Release 3 of the Sloan Digital Sky Survey

    Full text link
    We have re-evaluated empirical expressions for the abundance determination of N, O, Ne, S, Cl, Ar and Fe taking into account the latest atomic data and constructing an appropriate grid of photoionization models with state-of-the art model atmospheres. Using these expressions we have derived heavy element abundances in the \sim 310 emission-line galaxies from the Data Release 3 of the Sloan Digital Sky Survey (SDSS)with an observed Hbeta flux F(Hbeta)> 1E-14 erg s^{-1} cm^{-2} and for which the [O III] 4363 emission line was detected at least at a 2sigma level, allowing abundance determination by direct methods. The oxygen abundance 12 + log O/H of the SDSS galaxies lies in the range from ~ 7.1 (Zsun/30) to 8.5 (0.7 Zsun). The SDSS sample is merged with a sample of 109 blue compact dwarf (BCD) galaxies with high quality spectra, which contains extremely low-metallicity objects. We use the merged sample to study the abundance patterns of low-metallicity emission-line galaxies. We find that extremely metal-poor galaxies (12 + log O/H < 7.6, i.e. Z < Zsun/12) are rare in the SDSS sample. The alpha element-to-oxygen abundance ratios do not show any significant trends with oxygen abundance, in agreement with previous studies, except for a slight increase of Ne/O with increasing metallicity, which we interpret as due to a moderate depletion of O onto grains in the most metal-rich galaxies. The Fe/O abundance ratio is smaller than the solar value, by up to 1 dex at the high metallicity end. (abridged)Comment: 17 pages, 12 figures. Accepted for publication in the Astronomy and Astrophysic
    corecore