6,883 research outputs found

    Radar studies in the solar system

    Get PDF
    We are actively engaged in observations of asteroids and comets, both as planned targets and as targets of opportunity. The most recent example of the latter is asteroid 1991 AQ, which was discovered optically on January 14, 1991 and found to be rapidly nearing Earth. Due in part to our previous success in obtaining useful radar data on short notice, we were able to schedule time on the Arecibo radar on January 28-31, when the asteroid was within the Arecibo declination window. Each day during the period, a fresh ephemeris was made including all available data, both optical and radar. With further processing, the results of the observations are expected to include detailed two-dimensional images of the asteroid and information on its surface properties, size, shape and spin. The observing program also included two other asteroids, two of the four Galilean satellites of Jupiter, the satellites of Mars, and the planet Mercury. Analysis of newly available radar observations of Venus has led to a refinement of the spin vector of that planet and has thereby provided a coordinate basis for the Magellan spacecraft mapping mission

    Studies of regional and global tectonics and the rotation of the earth using very-long baseline interferometry

    Get PDF
    Progress in the areas of data analysis, atmospheric delay calibration and software conversion is reported. Over 800 very long baseline interferometry (VLBI) experiments were analyzed in the last 6 months. Reprocessing of the Mark III VLBI data set is almost completed. Results of analysis of the water-vapor radiometer (WVR) data were submitted and a preprint of a related paper is attached. Work on conversion of the VLBI analysis software from HP1000 to Unix based workstations is continuing

    Radar studies in the solar system

    Get PDF
    The ephemerides needed to acquire radar data at Arecibo from observations of various solar-system objects was developed. The resultant data to test fundamental laws of gravitation and to determine the size, shape, topography, and spin vectors of the targets were analyzed. The surface properties of these objects through their radar scattering and polarization characteristics were studied. The observing program also included Arecibo observations of Mercury, Venus, and the Galilean satellites of Jupiter. The Mercury observations at Arecibo were all within a week of the epoch of a closure point (same surface position as a previous observation), and one was matched by a near-simultaneous observation at Goldstone

    Anomalous Diffusion In Microrheology: A Comparative Study

    Full text link
    We present a comparative study on two theoretical descriptions of microrheological experiments. Using a generalized Langevin equation (GLE), we analyze the origin of the power-law behavior of the main properties of a viscoelastic medium. Then, we discuss the equivalence of the GLE with a generalized Fokker-Planck equation (GFPE), and how more general GFPE's can be derived from a thermo-kinetic formalism. These complementary theories lead to a justification for the physical nature of the Hurst exponent of fractional kinetics. Theory is compared with experiments.Comment: 7 pages, 3 figure

    Memory and mutualism in species sustainability: a time-fractional Lotka-Volterra model with harvesting

    Full text link
    We first present a predator-prey model for two species and then extend the model to three species where the two predator species engage in mutualistic predation. Constant effort harvesting and the impact of by-catch issue are also incorporated. Necessary sufficient conditions for the existence and stability of positive equilibrium points are examined. It is shown that harvesting is sustainable, and the memory concept of the fractional derivative damps out oscillations in the population numbers so that the system as a whole settles on an equilibrium quicker than it would with integer time derivatives. Finally, some possible physical explanations are given for the obtained results. It is shown that the stability requires the memory concept in the model

    Kinematically Cold Populations at Large Radii in the Draco and Ursa Minor Dwarf Spheroidals

    Full text link
    We present projected velocity dispersion profiles for the Draco and Ursa Minor (UMi) dwarf spheroidal galaxies based on 207 and 162 discrete stellar velocities, respectively. Both profiles show a sharp decline in the velocity dispersion outside ~30 arcmin (Draco) and ~40 arcmin (UMi). New, deep photometry of Draco reveals a break in the light profile at ~25 arcmin. These data imply the existence of a kinematically cold population in the outer parts of both galaxies. Possible explanations of both the photometric and kinematic data in terms of both equilibrium and non-equilibrium models are discussed in detail. We conclude that these data challenge the picture of dSphs as simple, isolated stellar systems.Comment: 5 pages, accepted for publication in ApJ Letter

    Solar-System Tests of Gravitational Theories

    Get PDF
    This research is aimed at testing gravitational theory, primarily on an interplanetary scale and using mainly observations of objects in the solar system. Our goal is either to detect departures from the standard model (general relativity) - if any exist within the level of sensitivity of our data - or to support this model by placing tighter bounds on any departure from it. For this project, we have analyzed a combination of observational data with our model of the solar system, including planetary radar ranging, lunar laser ranging, and spacecraft tracking, as well as pulsar timing and pulsar VLBI measurements

    Radar Studies in the Solar System

    Get PDF
    We aid in study of the solar system by means of ground-based radar. We have concentrated on: (1) developing the ephemerides needed to acquire radar data at Arecibo Observatory and (2) analyzing the resultant data to: test fundamental laws of gravitation; determine the size , shape, topography, and spin vectors of the targets; and study the surface properties of these objects, through their scattering law and polarization characteristics. We are engaged in radar observations of asteroids and comets, both as systematically planned targets and as "targets of opportunity." In the course of the program, we have prepared ephemerides for about 80 asteroids and three comets, and the radar observations have been made or attempted at the Arecibo Observatory, in most cases successfully, and in some cases on more than one apparition. The results of these observations have included echo spectra for the targets and, in some cases, delay - Doppler images and measurements of the total round-trip delay to the targets. Perhaps the most dramatic of these results are the images obtained for asteroids (4179) Toutatis and 1989PB (Castalia), which were revealed to be double-lobed objects by the radar images. Besides these direct results, the radar observations have furnished information on the sizes and shapes of the targets through analysis of the Doppler width of the echoes as a function of time, and on the surface properties (such as composition, bulk density, and roughness) through analysis of the reflectivity and of the polarization state of the echoes. We have also refined the orbits of the observed asteroids as a result of the Doppler (and in some cases delay) measurements from the radar observations. Although the orbits of main-belt asteroids accessible to ground-based radar are quite well known from the available optical data, some near-Earth objects have been seen by radar very soon after their optical discovery (for example, 199OMF, just eight days after discovery). In such cases. the radar results ensure that the object in question can be anticipated and identified at the next apparition. We have also participated in radar studies of the terrestrial planets. The results of these studies have included both planetary topography profiles from the analysis of round-trip delays to points along the target Doppler equator and determinations of the target spin state. The latter is of special interest in the case of Venus, which is very close to, but not on, a multi-body spin-orbit resonance such that Venus rotates 12 times for every 8 Earth orbits and 13 Venus orbits. As a result, Venus presents nearly the same face toward Earth at each inferior conjunction. Our latest results confirm that the spin state of Venus is slightly off the resonance. The delay measurements from planetary 2 ranging have also been used in combination with other types of range data in testing general relativity with increasing accuracy. We have also been engaged in radar studies of planetary satellites. Using our ephemerides, Arecibo made radar observations of the Galilean satellites of Jupiter and of Mars' satellite Phobos during the favorable opposition seasons (1988-1992 for Jupiter and 1990 for Mars). An attempt was also made to observe Deimos, but without detecting an echo. In 1997, an attempt was made to observe Saturn's satellite Titan, using the newly upgraded Arecibo radar system for transmitting and the Goldstone radar for receiving, but no echo was detected. The study of satellites by radar is in many ways similar to that of asteroids. The results from these observations have included characterization of the surface properties from the reflectivity and polarization ratio, as well as (in the case of the large satellites of Jupiter) the variation of reflectivity with incidence angle
    corecore