1,189 research outputs found

    A role for SUMO modification in transcriptional repression and activation

    Get PDF
    Since the discovery of the SUMO (small ubiquitin-like modifier) family of proteins just over a decade ago, a plethora of substrates have been uncovered including many regulators of transcription. Conjugation of SUMO to target proteins has generally been considered as a repressive modification. However, there are now a growing number of examples where sumoylation has been shown to activate transcription. Here we discuss whether there is something intrinsically repressive about sumoylation, or if the outcome of this modification in the context of transcription will prove to be largely substrate-dependent. We highlight some of the technical challenges that will be faced by attempting to answer this question

    Strangelets: Who is Looking, and How?

    Full text link
    It has been over 30 years since the first suggestion that the true ground state of cold hadronic matter might be not nuclear matter but rather strange quark matter (SQM). Ever since, searches for stable SQM have been proceeding in various forms and have observed a handful of interesting events but have neither been able to find compelling evidence for stable strangelets nor to rule out their existence. I will survey the current status and near future of such searches with particular emphasis on the idea of SQM from strange star collisions as part of the cosmic ray flux.Comment: Talk given at International Conference on Strangeness in Quark Matter, 2006. 8 pages. 1 figur

    Distorted wave impulse approximation analysis for spin observables in nucleon quasi-elastic scattering and enhancement of the spin-longitudinal response

    Full text link
    We present a formalism of distorted wave impulse approximation (DWIA) for analyzing spin observables in nucleon inelastic and charge exchange reactions leading to the continuum. It utilizes response functions calculated by the continuum random phase approximation (RPA), which include the effective mass, the spreading widths and the \Delta degrees of freedom. The Fermi motion is treated by the optimal factorization, and the non-locality of the nucleon-nucleon t-matrix by an averaged reaction plane approximation. By using the formalism we calculated the spin-longitudinal and the spin-transverse cross sections, ID_q and ID_p, of 12C, 40Ca (\vec{p},\vec{n}) at 494 and 346 MeV. The calculation reasonably reproduced the observed ID_q, which is consistent with the predicted enhancement of the spin-longitudinal response function R_L. However, the observed ID_p is much larger than the calculated one, which was consistent with neither the predicted quenching nor the spin-transverse response function R_T obtained by the (e,e') scattering. The Landau-Migdal parameter g'_N\Delta for the N\Delta transition interaction and the effective mass at the nuclear center m^*(r=0) are treated as adjustable parameters. The present analysis indicates that the smaller g'_{N\Delta}(\approx 0.3) and m^*(0) \approx 0.7 m are preferable. We also investigate the validity of the plane wave impulse approximation (PWIA) with the effective nucleon number approximation for the absorption, by means of which R_L and R_T have conventionally been extracted.Comment: RevTex 3, 29 pages, 2 tables, 8 figure

    Parity Violation in a Single Domain of Spin-Triplet Sr2RuO4 Superconductors

    Get PDF
    We observed an unconventional parity-violating vortex in single domain Sr2RuO4 single crystals using a transport measurement. The current-voltage characteristics of submicron Sr2RuO4 shows that the induced voltage has anomalous components which are even function of the bias current. The results may suggest that the vortex itself has a helical internal structure characterized by a Hopf invariant (a topological invariant). We also discuss that the hydrodynamics of such a helical vortex causes the parity violation to retain the topological invariant.Comment: Accepted for publication in Solid State Communication

    Effect of interchain separation on the photoinduced absorption spectra of polycarbazolyldiacetylenes

    Get PDF
    The photoinduced absorption spectra of a novel polycarbazolyldiacetylene with long aliphatic chains on the carbazolyl side groups are measured and compared with those of the unsubstituted polyDCHD. The two polymers in the blue form exhibit very similar electronic absorption spectra and Raman frequencies. This fact indicates that the conjugation length of the polydiacetylene backbone is not too affected by the long substituents. In contrast, the near steady-state photoinduced absorption spectra show that different photogeneration mechanisms are involved in the two polymers. This result can be ascribed to the role played by the interchain distance in the dynamics of the relaxation processes in polydiacetylenes

    Ground State Correlations in 16O and 40Ca

    Full text link
    We study the ground state properties of doubly closed shell nuclei 16^{16}O and 40^{40}Ca in the framework of Correlated Basis Function theory using state dependent correlations, with central and tensor components. The realistic Argonne v14v_{14} and v8â€Čv'_{8} two-nucleon potentials and three-nucleon potentials of the Urbana class have been adopted. By means of the Fermi Hypernetted Chain integral equations, in conjunction with the Single Operator Chain approximation, we evaluate the ground state energy, one- and two-body densities and electromagnetic and spin static responses for both nuclei. In 16^{16}O we compare our results with the available Monte Carlo and Coupled Cluster ones and find a satisfying agreement. As in the nuclear matter case with similar interactions and wave functions, the nuclei result under-bound by 2--3 MeV/A.Comment: 33 RevTeX pages + 8 figures, to appear in Phys.Rev.

    Local Density Approximation for proton-neutron pairing correlations. I. Formalism

    Full text link
    In the present study we generalize the self-consistent Hartree-Fock-Bogoliubov (HFB) theory formulated in the coordinate space to the case which incorporates an arbitrary mixing between protons and neutrons in the particle-hole (p-h) and particle-particle (p-p or pairing) channels. We define the HFB density matrices, discuss their spin-isospin structure, and construct the most general energy density functional that is quadratic in local densities. The consequences of the local gauge invariance are discussed and the particular case of the Skyrme energy density functional is studied. By varying the total energy with respect to the density matrices the self-consistent one-body HFB Hamiltonian is obtained and the structure of the resulting mean fields is shown. The consequences of the time-reversal symmetry, charge invariance, and proton-neutron symmetry are summarized. The complete list of expressions required to calculate total energy is presented.Comment: 22 RevTeX page

    Near-field optical power transmission of dipole nano-antennas

    Get PDF
    Nano-antennas in functional plasmonic applications require high near-field optical power transmission. In this study, a model is developed to compute the near-field optical power transmission in the vicinity of a nano-antenna. To increase the near-field optical power transmission from a nano-antenna, a tightly focused beam of light is utilized to illuminate a metallic nano-antenna. The modeling and simulation of these structures is performed using 3-D finite element method based full-wave solutions of Maxwell’s equations. Using the optical power transmission model, the interaction of a focused beam of light with plasmonic nanoantennas is investigated. In addition, the tightly focused beam of light is passed through a band-pass filter to identify the effect of various regions of the angular spectrum to the near-field radiation of a dipole nano-antenna. An extensive parametric study is performed to quantify the effects of various parameters on the transmission efficiency of dipole nano-antennas, including length, thickness, width, and the composition of the antenna, as well as the wavelength and half-beam angle of incident light. An optimal dipole nanoantenna geometry is identified based on the parameter studies in this work. In addition, the results of this study show the interaction of the optimized dipole nano-antenna with a magnetic recording medium when it is illuminated with a focused beam of light

    Search for two-neutrino double electron capture on 124^{124}Xe with the XMASS-I detector

    Full text link
    Double electron capture is a rare nuclear decay process in which two orbital electrons are captured simultaneously in the same nucleus. Measurement of its two-neutrino mode would provide a new reference for the calculation of nuclear matrix elements whereas observation of its neutrinoless mode would demonstrate lepton number violation. A search for two-neutrino double electron capture on 124^{124}Xe is performed using 165.9 days of data collected with the XMASS-I liquid xenon detector. No significant excess above background was observed and we set a lower limit on the half-life as 4.7×10214.7 \times 10^{21} years at 90% confidence level. The obtained limit has ruled out parts of some theoretical expectations. We obtain a lower limit on the 126^{126}Xe two-neutrino double electron capture half-life of 4.3×10214.3 \times 10^{21} years at 90% confidence level as well.Comment: 6 pages, 3 figures, accepted for publication in Physics Letters
    • 

    corecore