13 research outputs found

    Photoluminescent Detection of Human T-Lymphoblastic Cells by ZnO Nanorods

    Get PDF
    The precise detection of cancer cells currently remains a global challenge. One-dimensional (1D) semiconductor nanostructures (e.g., ZnO nanorods) have attracted attention due to their potential use in cancer biosensors. In the current study, it was demonstrated that the possibility of a photoluminescent detection of human leukemic T-cells by using a zinc oxide nanorods (ZnO NRs) platform. Monoclonal antibodies (MABs) anti-CD5 against a cluster of differentiation (CD) proteins on the pathologic cell surface have been used as a bioselective layer on the ZnO surface. The optimal concentration of the protein anti-CD5 to form an effective bioselective layer on the ZnO NRs surface was selected. The novel biosensing platforms based on glass/ZnO NRs/anti-CD5 were tested towards the human T-lymphoblast cell line MOLT-4 derived from patients with acute lymphoblastic leukemia. The control tests towards MOLT-4 cells were performed by using the glass/ZnO NRs/anti-IgG2a system as a negative control. It was shown that the photoluminescence signal of the glass/ZnO NRs/anti-CD5 system increased after adsorption of T-lymphoblast MOLT-4 cells on the biosensor surface. The increase in the ZnO NRs photoluminescence intensity correlated with the number of CD5-positive MOLT-4 cells in the investigated population (controlled by using flow cytometry). Perspectives of the developed ZnO platforms as an efficient cancer cell biosensor were discussed

    Influence of PDA Coating on the Structural, Optical and Surface Properties of ZnO Nanostructures

    Get PDF
    Polydopamine (PDA) is a new biocompatible material, which has prospects in biomedical and sensor applications. Due to functional groups, it can host wide range of biomolecules. ZnO nanostructures are well known templates for optical sensors and biosensors. The combination of ZnO and PDA results in a change of optical properties of ZnO–PDA composites as a shift of photoluminescence (PL) peaks and PL quenching. However, to date, the effect of the PDA layer on fundamental properties of ZnO–PDA nanostructures has not been studied. The presented paper reports on optical and surface properties of novel ZnO–PDA nanocomposites. PDA layers were chemically synthesized on ZnO nanostructures from different solution concentrations of 0.3, 0.4, 0.5 and 0.7 mg/mL. Structure, electronic and optical properties were studied by SEM, Raman, FTIR, diffuse reflectance and photoluminescence methods. The Z-potential of the samples was evaluated in neutral pH (pH = 7.2). The response of the samples towards poly-l-lysine adsorption, as a model molecule, was studied by PL spectroscopy to evaluate the correlation between optical and surface properties. The role of the PDA concentration on fundamental properties was discussed

    Obtaining porous silicon suitable for sensor technology using MacEtch nonelectrolytic etching

    No full text
    The author suggests to use the etching method MacEtch (metal-assisted chemical etching) for production of micro- and nanostructures of porous silicon. The paper presents research results on the morphology structures obtained at different parameters of deposition and etching processes. The research has shown that, depending on the parameters of deposition of silver particles and silicon wafers etching, the obtained surface morphology may be different. There may be both individual crater-like pores and developed porous or macroporous surface. These results indicate that the MacEtch etching is a promising method for obtaining micro-porous silicon nanostructures suitable for effective use in gas sensors and biological object sensors

    Atomic layer deposition of palladium coated TiO2/Si nanopillars: ToF-SIMS, AES and XPS characterization study

    No full text
    Nanocomposite based on Palladium (Pd) Coated TiO2/Si nanopillars is an attractive candidate for photocatalytic applications because of its outstanding electrochemical and optical characteristics. In this research, Pd/TiO2/Si nanopillars were synthesized by combination of metal-assisted chemical etching and atomic layer deposition, and then the surface was investigated by means of Electron microscopy, Time-of-Flight Secondary Ion Mass-Spectrometry (ToF-SIMS), Auger Electron Spectroscopy (AES) and X-Ray Photoelectron spectroscopy (XPS). The spatial distribution of different chemical components and contaminations on the surface of the produced nanocomposites was evaluated by ToF-SIMS mapping. Depth profiling by AES was carried out to determine the chemical composition and the conformality of Pd and TiO2 layer over the Si pillars. The elemental composition and stoichiometry were determined by XPS analysis. The XPS valence band analysis was performed in order to investigate the modification of TiO2/Si nanopillars electronic structure after Pd deposition. It was found that the Pd coating decreases the concentration of photoactive defects that can reduce the photoelectrochemical efficiency of TiO2

    Application of Polydopamine Functionalized Zinc Oxide for Glucose Biosensor Design

    Get PDF
    Zinc oxide (ZnO) nanostructures are widely used in optical sensors and biosensors. Functionalization of these nanostructures with polymers enables optical properties of ZnO to be tailored. Polydopamine (PDA) is a highly biocompatible polymer, which can be used as a versatile coating suitable for application in sensor and biosensor design. In this research, we have grown ZnO-based nanorods on the surface of ITO-modified glass-plated optically transparent electrodes (glass/ITO). Then the deposition of the PDA polymer layer on the surface of ZnO nanorods was performed from an aqueous PDA solution in such a way glass/ITO/ZnO-PDA structure was formed. The ZnO-PDA composite was characterized by SEM, TEM, and FTIR spectroscopy. Then glucose oxidase (GOx) was immobilized using crosslinking by glutaraldehyde on the surface of the ZnOPDA composite, and glass/ITO/ZnO-PDA/GOx-based biosensing structure was designed. This structure was applied for the photo-electrochemical determination of glucose (Glc) in aqueous solutions. Photo-electrochemical determination of glucose by cyclic voltammetry and amperometry has been performed by glass/ITO/ZnO-PDA/GOx-based biosensor. Here reported modification/functionalization of ZnO nanorods with PDA enhances the photo-electrochemical performance of ZnO nanorods, which is well suited for the design of photo-electrochemical sensors and biosensors

    Synthesis and photoluminescence properties of hybrid 1D core–shell structured nanocomposites based on ZnO/polydopamine

    No full text
    In the present work, we report on the modelling of processes at the zinc oxide and polydopamine (ZnO/ PDA) interface. The PDA layer was deposited onto ZnO nanorods (NRs) via chemical bath deposition. The defect concentrations in ZnO before and after PDA deposition were calculated and analysed. The ZnONRs/PDA core–shell nanostructures were studied by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman and Fourier-transform infrared (FTIR) spectroscopy, photoluminescence (PL) measurements, and diffuse reflectance spectroscopy. The TEM and electron energy loss spectroscopy (EELS) measurements confirmed the conformal coating of PDA, while the PL emission from ZnO and ZnONRs/PDA samples showed a reduction of intensity after the PDA deposition. The decrease of defect concentration participating in PL and quantum efficiency explains the PL reduction. Finally, the observed decrease of activation energies and a shift of the PL peaks are attributed to the formation of an additional local electrical field between the PDA and ZnO nanostructures
    corecore