23 research outputs found

    Low-Frequency Electromagnetic Signals Observed before Strong Earthquakes

    Get PDF
    We consider two kinds of signals preceding earthquake (EQ): intensification of internal electromagnetic (EM) field – lithosphere emission (LE) and change of the Earth interior response function (RF). Several cases of LE before strong EQs were reviewed and analyzed, and preliminary portrait of LE precursor was compiled. LE can appear several times with lead time month(s), weeks, days, and hours and can attain amplitude of several hundreds of nT which not uniformly decreases with increasing distance from the source. Typical LE frequency content/maximum is 0.01–0.5 Hz. Data of 19 Japanese geomagnetic observatories for 20 years preceding the Tohoku EQ on March 11, 2011 were analyzed, and RFs (mainly induction vector) were calculated. At six observatories in 2008–2010, anomalous variations of RF were separated which can be identified as middle-term precursors. Applying the original method developed in Ukraine, a short-term two-month-long precursor of bay-like form was separated by phase data of observatory KNZ in the Boso peninsula where electrical conductivity anomaly was also discovered. Hypothetical explanation based on tectonic data is advanced: Boso anomaly connects two large-scale conductors—Pacific seawater and deep magma reservoir beneath a volcanic belt. Between two so different conductors, an unstable transition zone sensitive to changes of stress before strong EQs can be expected

    North-south asymmetry of planets as effect of Kozyrev’s causal asymmetrical mechanics

    No full text
    Mars Orbiter Laser Altimeter (MOLA) team discovered “the striking difference” in elevation between northern and southern hemispheres: “on Mars, the South Pole lying about six km higher than the North Pole, … the planet’s center of mass (is) 3 km north of its geometric center” (Physics Today, Oct 1999, p. 34). The same topography we have for solid Earth: low Arctic and high Antarctic with the same difference 5–7 km. No sound explanation of NS asymmetry was proposed: impact, planetary evolution, mantle convection … are rather artificial and vague. Meanwhile, NS asymmetry is inherent property of any freely rotating flexible celestial body as it follows from Kozyrev’s Causal or asymmetrical mechanics. Relations of Causal mechanics are supported by experimental study of vertical component of causal force by weight change measurement of rotated gyroscope and the study of its horizontal component by pendulum deflection measurement. Kozyrev made measurements at latitudes φ from 45° to 84° and proved that causal force is directed along Earth rotation axis: to the North for φ 73°. The magnitude of causal force has order (1–5) × 10−5 of gravity force

    Notes on geoelectrics

    No full text
    Unlike practical science - electrical prospecting, geoelectrics is regarded as a fundamental science, which sets the task of an honest, reliable study of the objective reality - the Earth. Since observation of electromagnetic fields is possible only on/above the Earth in a limited number of sites with limited accuracy, the conclusions of geoelectrics are always ambiguous. Providing only a single solution, especially resulting from the use of regularization, can lead to false conclusions, and regarded as a manipulation of facts, that discredits both the authors and the whole science of geoelectrics. So, many products of inversion (especially 2D) should be regarded not as a well proven geological result but as one of possible transformation of response functions

    Absolute motion as the basis of Kozyrev’s theory of time

    No full text
    The present paper concretizes one of the principal positions of Kozyrev’s (1908–1983) theory of time

    Geoelectromagnetic investigation of the earth’s crust and mantle

    No full text
    Electrical conductivity is a parameter which characterizes composition and physical state of the Earth's interior. Studies of the state equations of solids at high temperature and pressure indicate that there is a close relation be­ tween the electrical conductivity of rocks and temperature. Therefore, measurements of deep conductivity can provide knowledge of the present state and temperature of the Earth's crust and upper mantle matter. Infor­ mation about the temperature of the Earth's interior in the remote past is derived from heat flow data. Experimental investigation of water-containing rocks has revealed a pronounced increase of electrical conductivity in the temperature range D from 500 to 700 DC which may be attributed to the beginning of fractional melting. Hence, anomalies of electrical conductivity may be helpful in identitying zones of melting and dehydration. The studies of these zones are perspective in the scientific research of the mobile areas of the Earth's crust and upper mantle where tectonic movements, processes ofthe region­ al metamorphism and of forming mineral deposits are most intensive. Thus, in the whole set of research on physics of the Earth the studies of electrical conductivity of deep-seated rocks appear, beyond doubt, very important

    Спектри добових варіацій геомагнітного поля

    No full text
    Spectral analysis of the geomagnetic field time series with the discreteness of 60 s (Intermagnet data) and a duration of, for example, 1 year (31×106 s) yields an average-annual amplitude spectrum over periods from approximately 500 s to 5×106 s. The spectrum consists of the continuous part (continuum spectrum) and narrow lines at the diurnal period T0=86400 s and its harmonics with periods T=T0/n, where n=2—7. The subject of this work is the diurnal line of the spectrum and its harmonics. The average-annual spectra of the geomagnetic field diurnal variations of 32 Intermagnet observatories in North America were calculated. Also the average-seasonal spectra of five observatories, which represent high, medium and low geomagnetic latitudes of both northern and southern hemispheres were obtained. At the near-pole high geomagnetic latitudes, only the daily harmonic T0 is observed, at the geomagnetic equator 7 harmonics are observed, in the aurora zone and middle latitudes — an intermediate number of harmonics: from two to seven. The amplitude is maximal at high latitudes (50—80 nТ), less at the geomagnetic equator (≈40 nТ), and quite minor at middle latitudes (10—15 nТ). These results are in good agreement with the known data on diurnal variations. The used representation of the harmonics of diurnal period by spectral lines makes it easy and clearly to track the features of diurnal variations and their changes both according to the data of individual observatories and synchronous data of many observatories. An interesting new scientific result is the detected widening of the diurnal harmonic spectral line from September to February and the absence of the widening from March to August for all three considered years 2009—2011 at all five observatories. This is not a seasonal variation, since it is equally observed at observatories in both the northern and southern hemispheres, in which the seasons are in antiphase. We can assume that this phenomenon is associated with a certain orientation of the Earth in outer space relative to some factor that changes the daily spectral line to a wider one. The absolute motion of the Earth, formed by a hierarchy of cosmological rotations, is supposed as such a factor. A brief review of the literature on the determination of the parameters of absolute motion is given.В результате спектрального анализа временных рядов геомагнитного поля с дискретностью 60 с (данные сети Интермагнет) и длительностью, например, 1 год (31 • 106 с) получаем среднегодовой амплитудный спектр на периодах примерно от 500 до 5 • 106с, на котором видим непрерывную часть ( континуум-спектр) и узкие линии на дневном периоде Т0 = 86400 с и его гармониках с периодами. Исследована суточную линию спектра и ее гармоники. Рассмотрены среднегодовые спектры суточных вариаций геомагнитного поля обсерваторий сети Интермагнет в Северной Америке и среднесезонные спектры пяти обсерваторий, определяющих высокие, средние и низкие геомагнитные широты обоих полушарий. На околополюсных высоких геомагнитных широтах наблюдается только суточную гармонику, на геомагнитному экваторе - семь гармоник, в зоне полярных сияний на средних широтах - промежуточную количество гармоник от двух до семи. Амплитуда максимальна в высоких широтах (50-80 нТл), меньшая - на геомагнитному экваторе (~ 40 нТл) и еще меньше на средних широтах (10-15 нТл). Эти результаты хорошо согласуются с известными данными о суточных вариаций. Использовано представление гармоник суточного периода спектральными линиями, что позволяет легко и наглядно отслеживать особенности суточных вариаций и их изменения как по данным отдельных обсерваторий, так и за синхронными данным многих обсерваторий. Представляет интерес новый научный результат - выявлено расширение спектральной линии суточной гармоники с сентября по февраль, которое отсутствует с марта по август для всех трех рассмотренных лет (2009-2011) на всех пяти обсерваториях. Это не сезонная вариация, поскольку она в равной степени наблюдается на обсерваториях и Северной и Южной полушарий, в которых сезона находятся в противофазе. Можно считать, что это явление связано с определенной ориентацией Земли в космическом пространстве относительно некоторого фактора, расширяет суточную спектральную линию. Предположено, что таким фактором может быть абсолютное движение Земли, образованный иерархией космологических вращений. Дан краткий обзор литературы по определению параметров абсолютного движения.У результаті спектрального аналізу часових рядів геомагнітного поля з дискретністю 60 с (дані мережі Интермаґнет) і тривалістю, наприклад, 1 рік (31 • 106 с) отримуємо середньорічний амплітудний спектр на періодах приблизно від 500 до 5 • 106с, на якому бачимо безперервну частину (континуум-спектр) і вузькі лінії на добовому періоді Т0 = 86 400 с та його гармоніках з періодами. Досліджено добову лінію спектра і її гармоніки. Розглянуто середньорічні спектри добових варіацій геомагнітного поля обсерваторій мережі Интермаґнет у Північній Америці і середньосезонні спектри п'яти обсерваторій, що визначають високі, середні та низькі геомагнітні широти обох півкуль. На навколополюсних високих геомагнітних широтах спостерігають тільки добову гармоніку, на геомагнитному екваторі — сім гармонік, у зоні полярних сяйв на середніх широтах — проміжну кількість гармонік від двох до семи. Амплітуда максимальна у високих широтах (50—80 нТл), менша — на геомагнитному екваторі (~ 40 нТл) і ще менша на середніх широтах (10—15 нТл). Ці результати добре узгоджуються з відомими даними щодо добових варіацій. Використано подання гармонік добового періоду спектральними лініями, що дає змогу легко і наочно прослідковувати особливості добових варіацій та їх зміни як за даними окремих обсерваторій, так і за синхронними даними багатьох обсерваторій. Становить інтерес новий науковий результат — виявлено розширення спектральної лінії добової гармоніки з вересня по лютий, яке відсутнє з березня по серпень для всіх трьох розглянутих років (2009—2011) на всіх п'яти обсерваторіях. Це не сезонна варіація, оскільки вона рівною мірою спостерігається на обсерваторіях і Північної, і Південної півкуль, в яких сезони знаходяться у протифазі. Можна вважати, що це явище пов'язане з певною орієнтацією Землі в космічному просторі щодо деякого фактора, що розширює добову спектральну лінію. Припущено, що таким фактором може бути абсолютний рух Землі, утворений ієрархією космологічних обертань. Подано короткий огляд літератури щодо визначення параметрів абсолютного руху

    Investigation of the electrical conductivity of the Moon (results and prospects)

    No full text
    The Moon was intensively studied in 1959-1976, when the first geophysical models of the Moon interior was created. Data of lunar seismology, gravity, topography, and selenology yield clear understanding that lunar crust and mantle are substantially not uniform laterally. Nevertheless having quite few seismometers and magnetometers at the Moon, only spherically symmetric 1D preliminary models of seismic velocities and electrical conductivity were obtained. Electromagnetic (EM) sounding of the Moon uses the variations of interplanetary magnetic field (as input inducing field) measured by orbital magnetometer and secondary induced (output) magnetic field measured at lunar surface. From this data, transfer function (in frequency or time domain) of the Moon interior is calculated and inverse problem (lucking for conductivity versus depth distribution) is solved. We consider physical aspects of EM sounding, discuss its limitation and principal source of error - the asymmetry of daytime and nighttime near-the Moon plasma

    On the Carpathian electrical conductivity anomaly depth study

    No full text
    Carpathian electrical conductivity anomaly (CECA) was discovered in the 1960ies and intensively studied by both individual institutions and within the framework of international projects in many countries, but without any strategic plan, which should be based on the definition of research objective, abilities of used methods (MVP and MTS) and rules of their interaction. The paper presents the main results of CECA research: construction of induction vectors in more than 1000 points, putting the anomaly on map, estimation by MVP methods of maximum possible depth of anomalous currents center and total longitudinal conductance of anomalous body. True depth of anomaly upper edge was defined by MTS method only in three localities and the works were performed 25-40 years ago. Goal of future CECA researches should be study of its nature (fluids or electronically conducting minerals) and prospects of practical use (minerals, geothermal energy ...). The first step in this direction should be MTS fulfillment (and/or other soundings) over the axis of the CECA to select locations for drilling
    corecore