8,515 research outputs found

    Phase separation in systems with charge ordering

    Get PDF
    A simple model of charge ordering is considered. It is shown explicitly that at any deviation from half-filling (n1/2n \neq 1/2) the system is unstable with respect to phase separation into charge ordered regions with n=1/2n = 1/2 and metallic regions with smaller electron or hole density. Possible structure of this phase-separated state (metallic droplets in a charge-ordered matrix)is discussed. The model is extended to account for the strong Hund-rule onsite coupling and the weaker intersite antiferromagnetic exchange. An analysis of this extended model allows us to determine the magnetic structure of the phase-separated state and to reveal the characteristic features of manganites and other substances with charge ordering.Comment: 9 pages, revte

    Adsorption and two-body recombination of atomic hydrogen on 3^3He-4^4He mixture films

    Full text link
    We present the first systematic measurement of the binding energy EaE_a of hydrogen atoms to the surface of saturated 3^3He-4^4He mixture films. EaE_a is found to decrease almost linearly from 1.14(1) K down to 0.39(1) K, when the population of the ground surface state of 3^3He grows from zero to 6×10146\times10^{14} cm2^{-2}, yielding the value 1.2(1)×10151.2(1)\times 10^{-15} K cm2^2 for the mean-field parameter of H-3^3He interaction in 2D. The experiments were carried out with overall 3^3He concentrations ranging from 0.1 ppm to 5 % as well as with commercial and isotopically purified 4^4He at temperatures 70...400 mK. Measuring by ESR the rate constants KaaK_{aa} and KabK_{ab} for second-order recombination of hydrogen atoms in hyperfine states aa and bb we find the ratio Kab/KaaK_{ab}/K_{aa} to be independent of the 3^3He content and to grow with temperature.Comment: 4 pages, 4 figures, all zipped in a sigle file. Submitted to Phys. Rev. Let

    Double-exchange model: phase separation versus canted spins

    Full text link
    We study the competition between different possible ground states of the double-exchange model with strong ferromagnetic exchange interaction between itinerant electrons and local spins. Both for classical and quantum treatment of the local spins the homogeneous canted state is shown to be unstable against a phase separation. The conditions for the phase separation into the mixture of the antiferromagnetic and ferromagnetic/canted states are given. We also discuss another possible realization of the phase-separated state: ferromagnetic polarons embedded into an antiferromagnetic surrounding. The general picture of a percolated state, which emerges from these considerations, is discussed and compared with results of recent experiments on doped manganaties.Comment: 10 pages, revtex, modified text and 2 new figure

    Universal low-energy properties of three two-dimensional particles

    Get PDF
    Universal low-energy properties are studied for three identical bosons confined in two dimensions. The short-range pair-wise interaction in the low-energy limit is described by means of the boundary condition model. The wave function is expanded in a set of eigenfunctions on the hypersphere and the system of hyper-radial equations is used to obtain analytical and numerical results. Within the framework of this method, exact analytical expressions are derived for the eigenpotentials and the coupling terms of hyper-radial equations. The derivation of the coupling terms is generally applicable to a variety of three-body problems provided the interaction is described by the boundary condition model. The asymptotic form of the total wave function at a small and a large hyper-radius ρ\rho is studied and the universal logarithmic dependence ln3ρ\sim \ln^3 \rho in the vicinity of the triple-collision point is derived. Precise three-body binding energies and the 2+12 + 1 scattering length are calculated.Comment: 30 pages with 13 figure

    On The Expected Photon Spectrum in B -> X_s + gamma and Its Uses

    Full text link
    Measuring the photon energy spectrum in radiative B decays provides essential help for gaining theoretical control over semileptonic B transitions. The hadronic recoil mass distribution in B -> X_u \ell\nu promises the best environment for determining |V_ub|. The theoretical uncertainties are largest in the domain of low values of the lepton pair mass q^2. Universality relations allow to describe this domain reliably in terms of the photon spectrum in B -> X_s + \gamma. A method is proposed to incorporate 1/m_b corrections into this relation. The low-E_\gamma tail in radiative decays is important in the context of extracting |V_ub|. We argue that CLEO's recent fit to the spectrum underestimates the fraction of the photon spectrum below 2 GeV. Potentially significant uncertainties enter in the theoretical evaluation of the integrated end-point lepton spectrum or the B -> X_u \ell\nu width with a too high value of the lower cut on q^2 in alternative approaches to |V_ub|.Comment: 24 pages, 6 figures, LaTeX. Revised: Complete version. Numerical predictions are improved and the estimate for the decay fraction revised. The theoretical expectations for the decay fraction and the spectrum itself are given on the plot

    Mechanism of Anomalous Tunneling in Condensed Bose System

    Full text link
    We clarify the origin of anomalous tunneling [Yu. Kagan et al. Phys. Rev. Lett. 90 (2003) 130402] i.e. the perfect transmission at low energy limit of tunneling of phonon excitations across the potential barrier separating two Bose condensates. The perfect transmission is a consequence of the coincidence of the wave function of the excited state at low energy limit and the macroscopic wave function of the condensate. We show that the perfect transmission at low energy occurs even at finite temperatures within the scheme of Popov approximation.Comment: 4 pages 1 figur

    Condensation and vortex formation in Bose-gas upon cooling

    Get PDF
    The mechanism for the transition of a Bose gas to the superfluid state via thermal fluctuations is considered. It is shown that in the process of external cooling some critical fluctuations (instantons) are formed above the critical temperature. The probability of the instanton formation is calculated in the three and two-dimensional cases. It is found that this probability increases as the system approaches the transition temperature. It is shown that the evolution of an individual instanton is impossible without the formation of vortices in its superfluid part
    corecore