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Condensation and vortex formation in a Bose gas upon cooling
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The mechanism for the transition of a Bose gas to the superfluid state via thermal fluctuations is considered.
It is shown that in the process of external cooling some critical fluctuations (instantons) are formed above the
critical temperature. The probability of the instanton formation is calculated in the three- and two-dimensional
cases. It is found that this probability increases as the system approaches the transition temperature. It is shown
that the evolution of an individual instanton is impossible without the formation of vortices in its superfluid

part.
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I. INTRODUCTION

The ideas of the kinetics of phase transitions have been
thoroughly developed for first-order phase transitions and en-
visage the existence of the metastable phase itself and an
equilibrium critical nucleus. The corresponding theory was
worked out in [1,2] and described in detail in [3]. However,
theoretical concepts concerning the kinetics of second-order
phase transitions have been developed insufficiently. Lifshits
[4] proposed a special model for the kinetics of the late
stages of second-order phase transitions with the scalar-two-
state-order parameter.

The interest in the problem of a phase transition upon a
fast change in external parameters (e.g., temperature) has
been aroused in connection with the cosmological ideas of
the Big Bang, where the rapidly expanding Universe must be
cooled and pass through a series of phase transformations
accompanied by a change in the symmetry of physical fields
[5]. It was suggested that the kinetics of these transforma-
tions can be modeled in condensed matter [6].

Zurek [7] proposed a theory of the second-order phase
transition upon a rapid change in temperature in liquid “He.
The main assumption in the proposed mechanism is the
“critical retardation” of all processes in the vicinity of the
transition temperature and “fast” formation of the nuclei of a
new phase upon the subsequent cooling. This gives rise to a
large number of defects on the order of the number of fluc-
tuations far above the transition point. However, to our best
knowledge, in contrast to first-order transitions no retarda-
tion in the formation of a new phase has been detected in
various second-order phase transitions. The critical retarda-
tion is usually associated with the duration of the equilibra-
tion process over macroscopic distances, which is insignifi-
cant for the nonuniform process of formation of a new phase.

The Bose condensate formation in a weakly interacting
gas was considered by Kagan and co-workers in a number of
papers [8—10]. These works concern the formation of the
condensate in a strongly nonequilibrium initial situation of a
Bose gas without the condensate but with the total energy
being much smaller than the equilibrium energy at the criti-
cal temperature.

In contrast to these works we assume that the formation of
the condensate is developed by the spatially localized ther-
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mal fluctuations during the process of the external cooling.
We make standard assumptions of the thermodynamical
theory of fluctuations and use macroscopic equations assum-
ing the local equilibrium inside the fluctuation of a finite
size. We consider the evolution of such a fluctuation in the
presence of the thermal noise. As a model we consider the
situation where Bose gas particles exist inside a crystal ma-
trix and only weakly interact with the lattice phonons but can
lose energy by phonon emission. Such a situation can be
achieved, for example, for Bose condensation of excitons
(see below). The crucial element of our analysis is the strong
amplification of the cooling process (by the phonon emission
into surrounding crystal lattice) due to the large compress-
ibility of the dilute Bose gas below the critical temperature.
Indeed, in the spatial region with the temperature below the
critical one there is the strong increase of the local density in
order to keep the constant pressure which leads to the strong
increase of the phonon emission. This amplification results in
the irreversible growth of the critical fluctuation with the
formation of the condensate before the main body of a Bose
gas achieved the critical temperature. This picture demon-
strates a certain analogy to the kinetics of the first-order
phase transitions. However, the important difference from
the classical theory of nucleation is that the probability of the
critical fluctuation is determined by the cooling process.
Since different fluctuations grow independently, having un-
correlated phases of the local order parameters the vortex
defects should appear at the late stage of this process. We
also discuss the possible mechanism of the vortex generation
during the late stage of the irreversible growth of a single
nucleus due to the appearance of the singularity in the super-
fluid velocity field.

In our preliminary paper [11] this approach was proposed
for the specific problem of Bose condensation of a weakly
interacting Bose gas. The appropriate set of equations gov-
erning critical fluctuations was derived. In the present work a
detailed analysis of the main equations is performed includ-
ing numerical calculations and a generalization to the case of
the two-dimensional exciton gas.

A similar approach to the problem of spontaneous wave
nucleation for a one-dimensional excitable system due to
thermal noise was considered in [12]. But the problem of the
present work requires the noise to be connected to the ran-
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dom heat fluxes (we discuss the Langevin equation for the
conserved quantity rather than for the nonconserved one of
[12]). In this case it is appropriate to use a more general
approach for the formation of critical fluctuation, namely lo-
cal Hamilton equations instead of the Lagrangian equations
used in [12] (see also [13]). In [14] the problem of large
negative gradients in Burgers turbulence was considered,
which has some resemblance to the differential equations
discussed in our work, but the boundary problem is quite
different.

II. DILUTE BOSE GAS UPON COOLING

The standard theory of a weakly nonideal Bose gas in-
volves a Hamiltonian of the form

o)

A _ p Ay A rnon

H_E Zmal’ ap+ m Ea”4 Ay Apypy» M)
p

where q is the scattering amplitude having the atomic scale
and m is the atomic mass. The properties of such gas for a
small density n (determined by the gas parameter 77=na3
< 1) are close to the properties of an ideal Bose gas with the
transition temperature [15]

3.31 %203
T.= 5 . (2)
\ m

At temperatures below the transition point, the ideal Bose
gas has a pressure depending only on the temperature:

3/2T5/2

P,= 0.0SSlT,

3)

which corresponds to zero isothermal sound velocity.
Considering the finite scattering amplitude we can write
the qualitative equation of state below the transition point as

ﬁzaon

P= ld(T) + (4)

This equation of state is obtained by dimensional analysis
and the second term may contain a numerical prefactor.

The entire kinetics is essentially determined by the Bose-
gas cooling mechanism. We consider a simple model where
the Bose gas is in a solid matrix with which it only slightly
interacts. Such a situation may take place, for example, for
the exciton gas in a crystal. The crystal can be rapidly cooled
to a low temperature; in this case, the Bose-gas cooling pro-
ceeds via phonon emission. Assuming that the heat capacity
of the crystal is large compared to the Bose gas, we can
disregard the presence of thermal phonons in the crystal and
their effect on the Bose gas. As a result, we obtain a uniform
energy-loss mechanism, which is described by an additional
term, T/7,,, in the heat-conductivity equation. The other
models of coohng necessitate the analysis of heat transfer at
the sample boundaries, which is a much more complicated
problem. The loss rate 1/7,, is determined by the collisions
of particles and by the interaction with phonons, which will
be assumed to be weak:
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Uz, <17,

Since 1/ 7, ~nvyo,y,, 1/ 7~ nvyao (vy is the thermal veloc-
ity), this means that

2
O-ph < ap,

which corresponds to the weak interaction of Bose gas with
the crystal (o, is the cross section for scattering with pho-
non em1ss1on)

In view of the smallness of quantity 1/7,, the evolution of
the Bose system is slow; in particular, we assume that the
acoustic wavelength CTpn =V Tph is large compared to the
characteristic length ~\x7 »n» Where x is the thermal diffu-

sivity:
\’X , fr < 1 (5)
TTtr ph

(I stands for the mean free path). This makes it possible to
assume that the fluctuation evolution occurs at a constant
pressure that coincides with the thermodynamic equilibrium
pressure.

It follows from Eq. (4) that the density variation & in the
fluctuation region is related to a change in temperature by

on oT 1

TR ©

with the small gas parameter, 7]=na3< 1. The relative den-
sity fluctuation is large compared to the relative temperature
fluctuation in the temperature range 7<<T.. This leads to a
rapid increase in the reciprocal phonon time

1 or 1 1

- ™
Tph T 7]”3 Tgh

(where 1/ 7'0ph=an'0'ph). with decreasi.ng temperature apd en-
hancement of cooling in the fluctuation region. For this rea-
son, we take the phonon emission into account only in the
region T<T,, assuming that

1 oT 1 1
_Thw T 771/3 OhU(T 1), (8)
P c p

where U(T.—-T)=1 for 6T=T-T,<0 and U(T.—
T-T,>0.

This allows us to consider the problem of fluctuation ki-
netics within the framework of the theory of hydrodynamic
fluctuations by supplementing the hydrodynamic equations
with the energy flux carried away as a result of phonon emis-
sion:

T)=0 for

T on =T
= u(r,.-1). (9)
Tph n Tph

where 1/7,,=(1/1, h)(l/r/m) In view of the constancy of
pressure, we can descrlbe the evolution of temperature fluc-
tuations by the heat conduction equation
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JT  _dT T-T,
ne,| —+v—=|=V(xVT)+ ne,U(T.-T),
ot or Tph

(10)

where the energy flux carried away by phonons is added, »x is
the heat conductivity, and ¢, is the specific heat per particle
under a constant pressure. This equation contains the drift
term with mass velocity v(r), which appears due to the high
density in the fluctuation core. In the following analysis, this
term will be omitted as a higher-order term in fluctuation. We
are interested in the temperature-field fluctuations and their
time evolution. To analyze these fluctuations, we must intro-
duce random heat fluxes q [3,16], i.e., the Langevin term
Vq. These fluxes are delta correlated (i.e., correlated at dis-
tances and time intervals smaller than the hydrodynamic
scales). In the considered case, this is ensured by the fact that
the time 7,,, and distance \J’XTph (x is thermal diffusivity) are
larger than the microscopic characteristics. We do not con-
sider independent fluctuations of the energy flux carried by
phonons because we neglect the thermal phonons and only
consider emitted ones.

The probability W/(7(r)) of realizing the given configura-
tion T(r) of fluctuation field at time 7 obeys the Fokker-
Planck equation in variational derivatives [17]

J S |xToe, &
—W=- —V w
ot oT(r)| nc,  OI(r)

T-T.
+ (XV2T+ U(T, - T)—‘)W]cﬁr. (11)
ph
In the absence of the phonon emission, the stationary solu-
tion to this equation coincides with the result obtained in the
thermodynamic theory of fluctuations. The quantity
r-T. o7

XV T+ U(T,-T) = (12)

Tph ot

is the temperature-variation rate upon the deviation from the
mean value T=T..

We assume that fluctuations occur at a fixed temperature
T,>T,. Fluctuations with AT=T-T,<T, occur quite fre-
quently and are characterized by a certain (in fact, stationary)
spatial distribution that determines the value of W,/(T). The
latter quantity gives the number of small fluctuations in a
unit volume. The problem of the exact normalization of W
cannot be solved in the framework of the hydrodynamical
theory of fluctuations and will be discussed later. This prob-
lem is difficult also for first-order phase transitions. How-
ever, rare large-amplitude fluctuations with T~T,.-T.,,
T<T,, also sometimes occur, initiating the effective cooling
by phonons, so that the fluctuation becomes irreversible and
the nucleus of a new phase appears. Our goal is to calculate
the probability of such fluctuations in a unit volume per unit
time. Since they are infrequent and the distribution at small
T..—T is stationary, one can use the method of characteristics
to determine the exponentially low probability of formation
of such a nucleus. The creation of the critical fluctuation by
thermal noise is in close analogy to the instanton problem in
quantum mechanics. The only difference is that the probabil-
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ity to cross the classically forbidden region in quantum me-
chanics is determined by quantum fluctuations instead of
thermal ones. Therefore it is reasonable to denote the process
as instanton for the Fokker-Planck equation. An important
difference from the theory of nucleation in the first-order
phase transition is that the probability of instanton formation
in this case is determined by the cooling process.

III. A TOY MODEL

To clarify the situation, let us consider the instanton solu-
tion in the case of one degree of freedom, for which the
Fokker-Planck equation has the form

= D— —-uvW
Jt  ox

w4 ow
= , (13)
ox

where D is the constant diffusion coefficient and v(x) is the
macroscopic variation rate of the quantity x with allowance
for its relaxation upon the deviation from equilibrium and for
an external effect (analogue of phonon emission). Setting
W=e¢5, and assuming that the moduli of S and its first deriva-

tive are large, we obtain, to leading terms, the equation
as as\* 4SS v

—=D|\—| —v———. (14)
ot x Jdx Ox

This is the Hamilton-Jacobi equation with the Hamiltonian
(8S/ox=p)

as 2 dv
H|—.x|==-Dp +pv+—. (15)
ox ax

The Hamilton equations are the characteristics of this equa-
tion in partial derivatives,

de_ 2Dp + (16)
dr pro.

dp__dv

v dv 17
dr~dxd’ T dx (17)

The contribution of the velocity divergence to the Hamil-
tonian is significant only in the vicinity of the point v=0.
The critical fluctuation (instanton) is described by the special
solution that passes through the equilibrium point p=0,
v=0. In the 1D Fokker-Planck equation, one can eliminate
the term with a first derivative by substitution; in this case,
we have an analogy with quantum mechanics and can use the
well-known results. Nevertheless, we will use direct esti-
mates in the vicinity of v=0.

In the Hamilton equation, the energy is conserved. In
view of the smallness of the divergence term, this gives
H=-Dp>+pv=0, where p=v/D and

2 x*
S:—f”—dr:f 2 ax. (18)
p“~), p

We assume that the velocity v(x) is a convex-down function
with two zeros [stable at zero and unstable at x* (x">0)].
Such a shape of the function v(x) is ensured by the entire
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cooling process, including phonon emission. For x>x", the
solution tends to larger values of x, while the action is gath-
ered from zero to x*, where v <0. In the vicinity of x*, we
must take into account the quantity dv/dx. For large values
of x, p? can be ignored, yielding p~—(dv/dx)/v,

S ~ Sy - In(v/vy), (19)

where v, is the effective velocity in the region where the
solutions for x<x" and x>x" match. The solution S, itself
has the form eS=uvye%/v, and current j=~uv,e%. One can
estimate the value of v, assuming that all terms in the
Hamiltonian H are of the same order of magnitude:

dv U

Dp? ~vp ~ — ~ 4, (20)
dx X
which gives
D vmax vmax
o | 2w P @
X V[Sol

In the many-dimensional case, the situation is the same,

dx' y ;

== 2Dp v, (22)
dp; vt d(divo)
e -, 23
dt ox' Pr ox' 23)

where p=0 at the beginning and p—0 at the end of the
trajectory. Consequently, |p| reaches its maximal value some-
where on the trajectory. At this point, the matrix dv;/dx; has
one zero eigenvalue and p is tangent to the corresponding
eigenvector; subsequently, the trajectory passes to the neigh-
borhood of the point corresponding to zero velocity v. This
leads to the definition of the critical fluctuation (instanton) as
a solution passing through the point x=p=0, whereupon
p—0 for |x| —o as 1/v, retaining the probability flux at a
constant level.

IV. OPTIMAL FLUCTUATION

An analogous procedure can be carried out for the field as
well. In this case, the Hamiltonian has the form, in accor-
dance with Eq. (11),

T2 T-T.
H= f p(r)<—X V2p(r) + YV2T + U(T, - T) ‘)d3r
nc

p Tph
(24)
with the Hamilton equations
oT 2xT2 T-T,
T2 ) 4 VAT + U(T, — ), (25)
at nc, Toh
14
P wvp-Lu -, (26)
ot Tph

Here, p=35S/6T(r). Equations (25) and (26) define the criti-
cal fluctuation and can be reduced to dimensionless variables
by the substitutions E=r/\xT,,, T=1/T,,
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T-T, _ney (T =T )L

0= :
-1, " I

s

where ® and Il are the new dimensionless fields. In this
case, the dimensionless equations have the form

0

P V0 +0U(-0) +2VII, (27)
;
oIl
— =-VAI-T1U(- 0). (28)
aT

The solution should fulfill the conditions l_[g_m—>0,
. .—0, O, _.—1, O,..—1 and pass through the
neighborhood of 90/dr=0, II=0 at 7— 7. Later the fluc-
tuation is developed by cooling, while the random fluxes can
be neglected and d0/d7=~V?*@+0OU(-0). With exponential
precision we can assume that J®/Jdr—0 at 7— +°, and O
tends to the stationary solution @, of the thermal diffusion
equation, Eq. (27):

O, =-sin(§)/§, &<,

O,=1-m/¢& &> (29)

The difficulties with the numerical solution of this bound-
ary value problem are due to the instability of Eq. (28) for
ascending time whereas Eq. (27) is unstable for descending
time. Therefore, it is impossible to find numerically the so-
lution of the Cauchy problem in either direction of time. We
briefly describe our adopted procedure. At early stages of the
evolution, when ® >0 everywhere in space, it is easy to
check the validity of the relation

O=1-11, (30)

which coincides with the thermodynamical theory of tem-
perature fluctuations. The function Il grows with time ac-
cording to Eq. (28) (thermal diffusion equation with negative
time derivative). We can assume that at 7=0 the maximum of
IT will reach 1. After this Eq. (30) is no longer valid. We can
consider Eq. (28) as a Schrodinger equation with imaginary
time and IT—0 at infinite time. At large 7, the function ©®
will be close to the stationary solution, Eq. (29), which be-
comes zero at £=r. This means that II, at large 7, has an
asymptotic proportional to

IT;,r= exp(- [\ D)W, (31)

where W, corresponds to the eigenfunction with the negative
eigenvalue, A=-0.4576, according to the Schrédinger equa-
tion with the potential —U(7—¢) (all other states will grow
with 7).

Let us denote by r(7) the space-point for which ®=0 at
time 7. The curve r*(7) is a function of 7 starting at small 7
as square root of 7 (because ® has a minimum at £=0) and
tending exponentially to 7 at large 7 [according to the
Schridinger-equation analogy, Eq. (31)]. We do not know
the exact form of r*(7) but we can choose some probe func-
tion with the same asymptotic behavior. Having such a probe
function, we can numerically solve Eq. (28), integrating it
backward in time (it is unstable while integrating it forward
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FIG. 1.
parameters.

Left and right derivatives at r° for two free

in time) with the condition I, ;= ¥, [of form Eq. (31)] [the
prefactor a should be chosen to satisfy Eq. (30) at 7=0].

Using this function I1, we can numerically solve Eq. (27)
in two space-time regions independently. The first one is the
internal region &< r"(7), the other one is &> r"(7) (the exter-
nal region). ® — 1 for £¢—o (for the external region) and
O(r")=0 (for the both regions). For the exact function r* the
space derivative ©®'=900/9¢ will be continuous. For our
probe function r* there will be some jump of the space de-
rivative ® at r*(7). Thus, after performing the calculations,
we will have in general a nonzero jump-function

AO' =0'(r'-0)-0'(r +0),

depending on the choice of the curve r’. Afterwords we
should search for a more exact r* in order to minimize
max|A®’|. Some steps within the framework of this proce-
dure have been performed.

We use a space-time grid 2000 X 2000. The grid spacing
was taken as 0£=0.015 for the space coordinate and
01=0.01 for the time coordinate. First, we perform calcula-
tions backward in time for IT using a standard implicit nu-
merical scheme where the space derivatives are calculated
for the final time of each time step. There are some modifi-
cations of the space grid in the vicinity of r=r"(z), for a
better finite difference representation of the Laplacian. Then
we use the analogous scheme for Eq. (27), find © in the
internal and external regions integrating forward in time, and
obtain A®’. We have defined our probe function r*() by a
number of parameters. To obtain an exact solution we need,
of course, an infinite number of parameters. In practice, for a
reasonable precision we only need a few. The simplest form
which obeys the asymptotic behavior is

* -
r=aVrt+Br, <7,

r'=m—Sexp(=|\|1), 7> 1.

The parameters should be chosen such that 7 is continuous
and smooth at 7=7,. This means that we have two free pa-
rameters in this case (e.g., @ and 7). After minimization of
max | A®’| with respect to these two parameters we find right
and left derivatives ®'(r"+0) (see Fig. 1).
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FIG. 2. Left and right derivatives at r* for three free
parameters.

We can improve our results by adding a new term y7:

-
r=a\T+ Br+y?, 1<,

r'=m-8exp(=|\|n), >, (32)
We have found that for @=2.28, y=0.016, and 7,=2.55 there
is an acceptable minimum of |A®’| (see Fig. 2). The corre-
sponding jump-functions A®’ for the two- and three-
parameter cases (for comparison) are plotted in Fig. 3. One
can see that the inclusion of this additional term decreases
the maximum deviation, max[|A®’|], by a factor of 3.

V. THE OPTIMAL FLUCTUATION PROBABILITY

The solution of Egs. (27) and (28) allows us to calculate
the action

aT ne,(T.-T,)* ——
S=JpEcPrdt—fHdt:so—é%(\’xrphP.

©

(33)

The negative constant s, is the dimensionless action

T T T T T T T T T

o—e 2 parameters
0.1 — 3 parameters| |

1

1 L 1 L
10 12 14 16 18 20

T

FIG. 3. Jump function A®’(r") for two and three free
parameters.
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so= J dr f 0.ONd ¢~ | Hdr, (34)
where the space integral is taken over the whole space. Here
H, = f (r)[VI(r) + V20 + U(- ©)O]d*¢  (35)

is the dimensionless Hamiltonian [Eq. (24)]. The negative
constant s is a universal number corresponding to the largest
action S and is independent of the values of physical con-
stants and the difference 7..—T..

From Eq. (27) and from the expression for the Hamil-
tonian, Eq. (35), it is easy to see that

s0=f drf IV2I1d3é

for a smooth solution of Egs. (27) and (28). In our case, the
jump of © derivatives should be taken into account which
modifies the action

s0=f de HV2Hd3§—J drffA@’HdS,.*.

The surface integral should be taken over a sphere of radius
r*. Using Eq. (28),

VI =- g1l - UG~ - 91,

we finally find for the action

soz—f de n%ﬁg-j dtffA(H)’HdS,*.
—o0 §<r* —o0

(36)
Substituting the results of the numerical calculations we get
so=—100.73.
Test results for a smaller grid spacing, 66=0.003, give
so=—100.23

with a negligible jump-function, A®’. These results are in
agreement with the naive estimate from Eq. (36): The char-
acteristic scale of I1?is 1 and the action is proportional to the
volume of a sphere of radius 7, which is about 100.

To estimate the temperature-variation rate, one can take

T.-T, —
(Nx7)’n. (37)

|Umax| =
ph

In this case, in accordance with Eq. (21), one can write for
the probability flux in the transition region

—
Tw[n( \“’XTQh)S]l/Z K
~ ev.

’Tpth

(38)

The constant v cannot be estimated from the theory of hy-
drodynamic fluctuations [18]. This quantity gives the number
of small equilibrium fluctuations with ST<<T in a unit vol-
ume on the atomic scale. As an estimate, we can use the
relation v=n/T,. Thus, the number of critical fluctuations
per unit time in a unit volume is
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i

aN n(n(Vxn)"” eXP( wl TC)Z(\«"XT )3>

di T,,;,C,, 0 ZTi ph .
(39)

The nuclei of a new phase are intensively formed as 7., ap-
proaches T, and then grow rapidly. We have considered the
initial phase of critical-fluctuation growth and restricted our
analysis to the heat transfer via heat conduction, disregarding
superfluidity effects at this stage. This approximation can be
justified by the fact that the largest contribution to the action
comes from the region lying far from the region of low ve-
locities v, where p(r)=48S/ 8T(r) becomes small and the fluc-
tuation contribution can be neglected because W~ v~!e%.

VI. BOSE CONDENSATION IN THE TWO-DIMENSIONAL
CASE

Most experiments on Bose condensation in exciton sys-
tems were done in the two-dimensional (2D) case because
these excitons are more stable [19,20]. Condensation into the
superfluid state of interwell excitons in AlAs/GaAs struc-
tures was supposedly observed in [19]. In these experiments
excitons were obtained in a 2D quantum well and were
cooled by phonon emission into the 3D volume of the sur-
rounding semiconductor [21]. We can expect our theory to be
suitable to explain the formation of a condensate in this case.
In such systems the Bose-gas of excitons is dilute (na(2)< 1)
and has a long lifetime. There is no true condensate at any
nonzero temperature but it was shown in [22] that there is a
superfluid transition of the Berezinsky-Kosterlitz-Thouless
type at

27mnh?
c= R (40)
m In In(1/nag)
According to [22] the pressure has the form
27n? T°{(2
mn mT-{(2) 1)

- m ln(llna(z)) 27h?

As it was pointed out in [23] these results hold only under
the condition,

In In(1/naj) > 1. (42)

Using the analogy to the 3D case, we consider temperature
fluctuations at constant pressure and generalize the results of
previous sections to the 2D case. In these fluctuations below
T. there is also an increase of the reciprocal phonon time,
and in the 2D case Eq. (6) should be replaced by

n_ T {In ln[l/(na%)]}z.

The large parameter {In[1/(naj)]/(In In[1/(na)])}* plays the
role of 1/%'? in Eq. (6). Eventually, we arrive to the same
set of equations, Egs. (27) and (28), as in the 3D case. Thus,
the number of critical fluctuations per unit time in a unit
volume in the 2D case is
12 2
av_ nlext) eXP<So_p—nC A (xr,,h>). (44)

dt Tphc 2T§o

(43)

p
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Numerical calculations in the 2D case are somewhat more
complicated in comparison to the 3D case. There is no a
stationary solution like Eq. (29). However, if we consider the
system of a finite size R, there will be an analog to Eq. (29):

Jo(é)
AM@M{%)

0
ln(é)
)\O
R\’
ln<—1)
)\()

Here J,, is a Bessel function and )\(1) is the first zero of Jy(x).
We see that the negative values of ® are logarithmically
suppressed. This is not very important because the system
after passing in the vicinity of the stationary point evolves
further due to the divergence term [which was neglected in
Eq. (24) and Egs. (27) and (28)]. This term in Eq. (24) has
the form

®stat= - §< )\(1)’

Oy = £> . (45)

ulr,.-T
AH:f—(C )dzr.

Tph

The Hamilton equations, Egs. (27) and (28), should also be
modified:

90
P V?0 + OU(- ) + 2V, (46)
-
oIl T2
—=-VIHI-MU-0)+8-0) —F5—.
aT (Too - Tc) ne,XTpn

(47)

Here 5(—0) is a delta function. As in the toy model, this term
starts to play an important role at large 7 while at small and
intermediate 7 it is unimportant. There is no need to take this
term into account in our calculations of the action in the 3D
case because it is a higher-order quasiclassical correction for
the 3D instanton. But in the 2D case, we can consider the
finite-time evolution due to this term. The large-time cutoff
can be estimated by assuming that at this moment the diver-
gence term becomes of the same order of magnitude as the
main terms in Eq. (47). We know the large-time asymptotics
of I in a finite-size system of radius R,

IT — a®,(r)exp(- \[7),

where W,(r) is the eigenfunction with the negative eigen-
value \ of the 2D Schrodinger equation with the potential
—U()\é—g). Using this asymptotics and comparing terms in

the equation for the norm, ||I1||=JT1%d*r,
) r
oL miny e
(T = To)"nc X Ty,

we can estimate the large-time cutoff as
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1 T, —T.)nc,xT,
AT~—ln<a|)\|( ”)2 X ”).

A (4

The space position of the thermal front, that corresponds to

this time, is
—
Ar=+Ar.

If we choose the point R, where @(R)=1, at the distance Ar
from the point " [where ©(r")=0 at the largest time], we can
assume that the value of the total action will be almost inde-
pendent of the exact position of R. We have performed a
number of runs with different values of R and have found no
essential difference in the action. The resulting constant is

So=— 13.6.

The same naive estimate as in 3D can be performed. The
action now is proportional 7(\)?, which is about 13.

VII. THE LATER STAGE OF INSTANTON GROWTH

In the previous sections we assume that the state inside
the critical nucleus at T<T, corresponds to the Bose con-
densate and, therefore, is superfluid. We suppose that at the
initial stage superfluidity does not play an important role in
heat transport and mostly used thermal noise and random
heat fluxes. Analysis of the subsequent growth of the new
superfluid phase requires the solution of the hydrodynamic
equations for a superfluid liquid, because a superfluid core
appears in the developing fluctuation. The thermal fluctua-
tions are no longer important at this stage. We will qualita-
tively consider the phenomena that arise in this case. Pro-
ceeding from the assumption that the value of 7, is large, we
assume that the motion in this region is quasi-stationary and
tuned due to the slow cooling by phonons. We will use the
hydrodynamic equations for a superfluid liquid in the vicin-
ity of the transition point in the form proposed by Khalatni-
kov [24]:

a
{Q—f +div(pyv, +p,v,) =0,

Jd . . d ok ik .
E(psv’s +p,v,) + ﬂ(pnv;vn +pivi+ Psf) =0,

J 2A v, —v,)*\? T
r20o) + Tdiv(nav,) = m( s (o~ v, ) e
ﬁ 2 Tph

2Am (v, = v,)?
s+ Ps-

%+div V,=—
at Pivs fi 2

Here, o is the entropy per particle, n is the number of par-
ticles per unit volume, and p is the density. The subscripts
n,s correspond to the normal and superfluid components,
respectively; the constant A is the relaxation parameter; and
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we introduced the term that accounts for the phonon-induced
energy removal in the equation for entropy. Here, the specific
chemical potential u, for the superfluid density should en-
sure the condensate equilibrium density that is obtained by
equating to zero the relaxation right-hand side of the equa-
tion for p,. In our model of a weakly nonideal Bose gas, we
can define phenomenologically

hla #la
== —[n—n(D)]+ —5ps, (48)
m m

so that p,=m[n—n(T)]=mdn in the equilibrium. Here, n(T)
is the number of particles outside the condensate. We assume
that the quantity Am/# is large and 7,—T is large enough for
the approximate equality ,us+v§/ 2=0 to be satisfied (we
disregard quantity v,, which is small compared to v,); this
gives

P gy 2 _ (1 _om’ ) (49)
mo 2h%a, " 2h%agon)’

In this case, it follows from the hydrodynamic equations that
= u(P,T)=const,

d Tp,
Tm + Tdiv(nov,) = - M, (50)
ot mt,y,

and the momentum conservation law gives
d , . J . : .
k k
E‘(psvg + anil) + 5Xk (anﬁmvn + psvlsvs + ng) =0.

In view of the smallness of v, compared to the sound veloc-
ity and the smallness of p,;, we will neglect these corrections
to pressure P= Py, In this case, only the equation for entropy
is significant. Assuming that the derivative (dno)/dt is small,
according to the assumption that the process is quasi-
stationary (low temperature-variation rate), we find that the
stationary regime —div(onv,)=-c,p,/7,, should approxi-
mately take place and that the mass flux should be zero
(pyv+p,v,=0). Considering that p, = p we obtain the equa-
tion

- odiv(p) = - 22, (51)

T, ph

where o is the entropy per particle. This equation determines
the heat transfer in the superfluid core. Using Eq. (49) we

obtain
19 v? 2\ ¢
0'——r2(1——;)vs—<1——§)—3:0,

u Tph

=0 (52)

By introducing the dimensional distance §=c,r/our,, and
v=v,/u we arrive at the equation

s _z)
&_v_(l v)(l gv .
9E 1 -3v? ' (53)
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The singular points of this differential equation are
1
= _’_5 U = _’
V3 \6

the latter point being a focus with the eigenvalues
N=1%iVy5. Since the velocity v must vanish at =0, v
~ §/3 for small £ and increases faster than by the linear law,
with the derivative d€/dv vanishing at v=1/y3 and at a cer-
tain £=¢., whereupon the derivatives assume negative values
upon the further increase in v. Thus, a regular superfluid flow
cannot be continued after the point &. (the constant is on the
order of unity and can be determined numerically). The criti-
cal radius

out,, o On 5 Ton
re~ = =—\[2— 7"y, (54)
c, ) n o
—. .
can be smaller than Vx7,,; it should also be noted that

1-v2>0 (i.e., a singularity appears in the superfluid core).
This singularity indicates that the quasi-stationarity condi-
tions are violated at £= ¢, and a complex nonstationary su-
perfluid flow probably with the intense vortex formation in
an instanton should appear upon the transition to the normal
liquid at 7> T,. Similar effects are observed in a superfluid
liquid in the gravitational field, where T, is a function of one
(vertical) coordinate and a fixed heat flux from the superfluid
to the normal liquid takes place [25]. We are dealing with a
similar situation arising due to the nonuniform cooling as the
critical temperature in the superfluid nucleus is approached.
The results of numerical calculation [26] and experimental
data [27,28] indicate the formation of a “vortex” superfluid
phase with a higher but finite thermal conductivity without a
superfluid transport. The mechanism of vortex formation and
the vortex phase of this kind have been poorly studied both
theoretically and experimentally.

VIII. CONCLUSION

Thus, we have shown that, in contrast to [7], a transition
to the superfluid phase can occur through an independent
growth of critical fluctuations (instantons) at temperatures
above the critical point (7> T,) immediately in the course of
external cooling. These fluctuations subsequently transform
into macroscopic formations. The growth of the nucleus of
the superfluid state probably is accompanied by vortex gen-
eration in its external part. Consequently, vortex defects ap-
pear both due to the independent nucleation with an arbitrary
phase upon cooling (the Zeldovich-Kibble hypothesis) and
directly during the growth of each superfluid nucleus. This
vortex-generation mechanism during the growth of an instan-
ton significantly differs from the mechanism determined in
[29], where the existence of a superfluid flow interacting
with the heated normal regions was presumed. In [29], an
attempt was made to explain the results of experiments [30],
in which *He was irradiated by neutrons. As a result, some
regions heated to temperatures above T, appeared. These re-
gions were cooled by the surrounding superfluid *He, and the
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formation of vortices was detected. Thus, nonuniform cool-
ing took place that differs considerably from the model used
in our study. In the critical fluctuation considered here, heat-
ing takes place due to its nonsuperfluid surroundings. Con-
sequently, it is advantageous for the fluctuation to preserve
its spherical symmetry to reduce this heating. In the case of
cooling of a heated region with superfluid surroundings [30],
the interface must obviously be unstable against its shape
distortions, because this leads to a faster cooling. However,
the stability, as well as the phase-transition mechanism itself,
under such conditions (which, in contrast to [29], are not

PHYSICAL REVIEW E 73, 016127 (2006)

associated with the existence of an external superfluid flow)
calls for detailed investigations.
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