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A simple model of charge ordering is considered. It is shown explicitly that at any deviation
from half-filling (n 6= 1/2) the system is unstable with respect to phase separation into charge
ordered regions with n = 1/2 and metallic regions with smaller electron or hole density. Possible
structure of this phase-separated state (metallic droplets in a charge-ordered matrix) is discussed.
The model is extended to account for the strong Hund-rule onsite coupling and the weaker intersite
antiferromagnetic exchange. An analysis of this extended model allows us to determine the magnetic
structure of the phase-separated state and to reveal the characteristic features of manganites and
other substances with charge ordering.

PACS numbers: 71.45.Lr, 75.10.-b, 75.30.Mb, 75.30.Kz

I. INTRODUCTION

The problem of charge ordering (CO) in magnetic oxides attracts an attention of theorists since the discovery of
Verwey transition in magnetite in the end of thirties [1]. An early theoretical description of this phenomenon was
given e.g. in [2]. Recently this problem was reexamined in a number of papers in connection with the colossal
magnetoresistance in manganites, see e.g. [3–5]. The mechanisms stabilizing the CO state may be different: the
Coulomb repulsion of charge carriers (the energy minimization requires keeping the carriers as far away as possible,
similar to the Wigner crystallization), or the electron-lattice interaction leading to the effective repulsion of electrons
at the nearest neighbor sites. In all cases, charge ordering can arise in systems with the mixed valence if the electron
bandwidth is sufficiently small — large electron kinetic energy stabilizes the homogeneous metallic state. In real
materials, in contrast to the Wigner crystallization, the underlying lattice periodicity determines the preferential
types of CO. Thus, in the simplest bipartite lattice, to which belong the colossal magnetoresistance manganites of the
type R1−xAxMnO3 (R = La, Pr; A = Ca, Sr), or layered manganites R2−xAxMnO4, R2−2xA1+2xMn2O7, the optimum
conditions for the formation of the CO state exist for doping x = 1/2. At such value of x the concentrations of Mn3+

and Mn4+ are equal, and the simple checkerboard arrangement is possible. The most remarkable experimental fact
here is that even at x 6= 1/2 (in the underdoped manganites, x < 1/2) only the simplest version of charge ordering is
experimentally observed with alternating checkerboard structure of occupied and empty sites in the basal plane [6].
In other words, this structure corresponds to the doubling of the unit cell, whereas the more complicated structures
with longer period (or even incommensurate structures) do not actually appear in this case.

Then, the natural question arises: how could we redistribute the extra or missing electrons in the case of arbitrary
doping level, keeping the superstructure the same as for x = 1/2 ? To answer this question, the experimentalists intro-
duced the concept of incipient charge ordered state corresponding to the distortion of long-range CO by microscopic
metallic clusters [7]. In fact, the existence of such a state implies a kind of phase separation. Note that the phase
separation scenario in manganites is very popular now [8]– [15]. Nowadays, there is a growing evidence suggesting
that an interplay between the charge ordering and the tendency toward phase separation plays an essential role in
the physics of materials with colossal magnetoresistance.

In this paper, we consider a simple model, which allows us to clarify the situation at arbitrary doping. We include in
this model both the Coulomb repulsion of electrons on the neighboring sites and the magnetic interactions responsible
for the magnetic ordering of manganites. After demonstrating the instability of the system toward phase separation
in certain ranges of doping, we also consider the simplest form of the phase separation — the formation of metallic
droplets in an insulating matrix, estimate parameters of such droplets, and construct the phase diagram illustrating
the interplay between charge ordering, magnetic ordering, and phase separation.
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One has to note that the mechanism of the charge ordering considered below (the Coulomb repulsion) is not the
only one. The electron-lattice interaction can also play an important role, see e.g. [16]. In application to manganites,
one has to take into account also orbital and magnetic interactions [4,16,17]. These may be important, in particular,
to explain the fact that the charge ordering in half-doped perovskite manganites is a checkerboard one only in the
basal plane, but it is “in-phase” in the c- direction. However, the nature of such charge ordering is not clear yet and
presents a separate problem: it is not evident that the magnetic interactions responsible for this stacking of ab-planes
in [16] is indeed the dominant mechanism. Let us also emphasize that the charge ordering in manganites is often
observed at higher temperatures than the magnetic ordering, and one has to look for a model not relying heavily on
magnetic interactions. Note that in contrast to magnetic interactions, the Coulomb interaction is one of the important
factors always present in the systems under consideration. Moreover, it has a universal nature and does not depend
critically on specific features of a particular system. Consequently, our treatment can be applied also to other systems
with the charge ordering such as magnetite Fe3O4 [1], cobaltites [18], nickelates [19], etc.

II. THE SIMPLEST MODEL FOR CHARGE ORDERING

Let us consider a simple lattice model for charge ordering:

Ĥ = −t
∑

<i,j>

c+
i cj + V

∑

<i,j>

ninj − µ
∑

i

ni, (1)

where t is the hopping integral, V is the nearest neighbor Coulomb interaction (similar nn repulsion can be also
obtained via the interaction with the breathing-type optical phonons); µ is the chemical potential, and c+

i and cj

are one-electron creation and annihilation operators, ni = c+
i ci. Symbol < i, j > denotes the summation over the

nearest-neighbor sites. Here, we omit for simplicity spin indices. We also assume the absence of a double occupancy
in this model due to the strong onsite repulsion between electrons.

The models of the type (1) with the nn repulsion being responsible for the charge ordering are the most popular ones
to describe this phenomenon, see e.g. [2,3,5,20] and references therein. Hamiltonian (1) captures the main physical
effects; if necessary, one can add to it some extra terms, which we will also do in Section V below.

In the main part of our paper, we will always speak about electrons. However in application to real manganites we
will mostly have in mind less than half-doped (underdoped) systems of the type R1−xAxMnO3 with x < 1/2. Thus,
for a real system one has to substitute holes for our electrons. All the theoretical treatment definitely remains the
same (from the very beginning we could define operators c and c+ in (1) as the operators of holes); we hope that it
will not lead to any misunderstanding.

We consider below the simplest case of square (2D) or cubic (3D) lattices, where for x = 1/2 the simple two-
sublattice ordering would take place. As mentioned in the Introduction, this is the case in layered manganites,whereas
the ordering in 3D perovskite manganites is like this only in the basal plane, the ordering being “in-phase” in the c

direction. To account for this behavior, apparently a more complicated model would be necessary.
For the case n = 1/2, the model (1) was analyzed in many papers; we follow the treatment of the Ref. [2]. As

mentioned above, the Coulomb repulsion (second term in (1)) stabilizes charge ordering in the form of checkerboard
arrangement of occupied and empty sites, whereas the first term (band energy) opposes this tendency. At arbitrary
values of electron density n, we shall at first consider a homogeneous CO solution and use the same ansatz as in [2],
namely

ni = n[1 + (−1)iτ ]. (2)

Such an expression implies the doubling of lattice periodicity, with the local densities n1 = n(1+τ) and n2 = n(1−τ)
at the neighboring sites. Note that at n = 1/2 for a general form of electron dispersion without nesting, the CO state
exists only at sufficiently strong repulsion V > 2t [2]. The order parameter is τ < 1 for finite V/2t, and the ordering
in general is not complete, i.e. an average electron density ni differs from zero or one even at T = 0.

We use the same coupled Green function approach as in [2], which yields











(E + µ)G1 − tkG2 − zV n(1 − τ)G1 =
1
2π

(E + µ)G2 − tkG1 − zV n(1 + τ)G2 = 0

(3)
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where G1 and G2 are the Fourier transforms of the normal lattice Green functions Gil = 〈〈cic
+
l 〉〉 for sites i and

l belonging respectively to one or different sublattices, z is the number of nearest neighbors and tk is the Fourier
transform of a hopping matrix element. While deriving (3), we performed a mean-field decoupling and replaced the
averages 〈c+

i ci〉 by the onsite densities ni = n[1 + (−1)iτ ]. Solution of (3) leads to the following spectrum:

E + µ = V nz ±
√

(V nτz)2 + t2k = V nz ± ωk. (4)

The spectrum defined by (4) resembles the spectrum of superconductor and hence the first term under the square
root is analogous to the superconducting gap squared. In other words, we can introduce the charge-ordering gap by
the formula

∆ = V nτz.

It depends upon density not only explicitly, but also via the density dependence of τ .
Hence, we get

ωk =
√

∆2 + t2k. (5)

Note that there is one substantial difference between the spectrum of charge ordered state (5) and superconducting
state, namely here for n 6= 1/2 the chemical potential does not enter under the square root in (5) in contrast to the
spectrum of superconductor where

ωk =
√

(tk − µ)2 + ∆2.

Then, we can find the following expressions for the Green functions :



















G1 =
Ak

E+µ−V nz−ωk+i0 +
Bk

E+µ−V nz+ωk+i0

G2 =
tk

2ωk

1
2π

[

1
E+µ−V nz−ωk+i0 −

1
E+µ−V nz+ωk+i0

]

,

(6)

where

Ak =
1

4π

(

1−
∆

ωk

)

, Bk =
1

4π

(

1+
∆

ωk

)

. (7)

After the standard Wick transformation E + i0 → iE in the expression for G1, we can find the densities in the
following form

n1 = n(1 + τ) =

∫
[(

1 −
∆

ωk

)

fF (ωk − µ + V nz) +

(

1 +
∆

ωk

)

fF (−ωk − µ + V nz)

]

d3
k

2ΩBZ
(8)

n2 = n(1 − τ) =

∫
[(

1 +
∆

ωk

)

fF (ωk − µ + V nz) +

(

1 −
∆

ωk

)

fF (−ωk − µ + V nz)

]

d3
k

2ΩBZ
,

where fF (y) = 1/
(

ey/T + 1
)

is the Fermi distribution function, and ΩBZ is the volume of the first Brillouin zone.
Summing up and subtracting two equations for n1 and n2, we get the resulting system of equations for n and µ:















1 = V z
∫ 1

ωk
[fF (−ωk − µ + V nz) − fF (ωk − µ + V nz)]

d3
k

2ΩBZ

n =
∫

[fF (−ωk − µ + V nz) + fF (ωk − µ + V nz)]
d3

k

2ΩBZ
.

(9)

For low temperatures T → 0 and n ≤ 1
2 it is reasonable to assume that µ−V nz is negative. Hence fF (ωk−µ+V nz) =

0 and fF (−ωk − µ + V nz) = θ(−ωk − µ + V nz) is the step function.
It is easy to see that for n = 1

2 the system of equations (9) yields identical results for all −∆ ≤ µ−V nz ≤ ∆. From
this point of view, n = 1/2 is a point of indifferent equilibrium. For infinitely small deviations from n = 1/2, that is,
for densities n = 1/2− 0, the chemical potential should be defined as µ = −∆+V z/2 = V z/2 · (1− τ). If we consider

3



a strong coupling case V ≫ 2t and assume a constant density of states inside the band, then for a simple cubic lattice

we have τ = 1 − 2W 2

3V 2z2 , and hence

µ =
W 2

3V z
, (10)

where W = 2zt is the bandwidth. Note that for the density n = 1/2 a charge-ordering gap ∆ appears for an arbitrary
interaction strength V . This is due to the existence of nesting in our simple model. In the weak coupling case V ≪ 2t
and with the perfect nesting, we have ∆ ∼ W exp

{

− W
V z

}

and τ is exponentially small. For zV ≫ W or accordingly
for V ≫ 2t: ∆ ≈ V z/2 and τ → 1. As mentioned above, for a general form of electron dispersion without nesting the
charge ordering exists only if the interaction strength V exceeds certain critical value of the order of bandwidth W
[2]. Further on, we restrict ourselves only to the physically more instructive case of strong coupling V ≫ 2t.

Now let us consider the case n = 1/2−δ, where δ ≪ 1 is a deviation from density n = 1/2. For this case µ = µ(δ, τ),
and we have two coupled equations for µ and τ . As a result,

µ(δ) ≈ V nz(1 − τ) −
4W 2

V z
δ2 ≈

W 2

3V z
+

4W 2

3V z
δ + O(δ2). (11)

Correspondingly, the energy of a charge ordered state is as follows

ECO(δ) = ECO(0) −
W 2

3V z
δ −

2W 2

3V z
δ2 + O(δ3), (12)

where ECO(0) = − W 2

6V z is the energy precisely for density n = 1/2 and |ECO(0)| ≪ W . At the same time, the
charge-ordering gap ∆ is given by:

∆ ≈
V z

2

[

1 − 2δ −
2W 2

3V 2z2
(1 + 4δ)

]

. (13)

Actually, the dependence of the chemical potential µ and the total energy E on δ, Eqs. (11), (12), stems from this
linear decrease of energy gap ∆ with deviation from half-filling.

For n > 1/2 the energy of charge ordered state starts to increase rapidly due to the large contribution from Coulomb
repulsion (the upper Verwey band is partially filled for n > 1/2). Contrary to the case n = 1/2, for n > 1/2 each
extra electron put into the checkerboard CO state necessarily has occupied nearest neighbor sites, increasing the total
energy on V z|δ|. As a result, we have for |δ| = n − 1/2 > 0

ECO(δ) = ECO(0) +

(

V z −
W 2

3V z

)

|δ| −
2W 2

3V z
δ2 + O(δ3). (14)

Accordingly, the chemical potential has the form

µ(δ) = V z −
W 2

3V z
−

4W 2

3V z
|δ| + o(δ2). (15)

It undergoes a jump equal to V z for τ → 1. Note that the gap ∆ is symmetric for n > 1/2 and is given by

∆ ≈
V z

2

[

1 − 2|δ| −
2W 2

3V 2z2
(1 + 4|δ|)

]

.

We could make the whole picture symmetric with respect to n = 1/2 by shifting all the one-electron energy levels and
the chemical potential by V z/2, i.e., defining µ′ = µ − V z/2. This change of variables, of course, would not modify
our conclusions.

III. PHASE SEPARATION

The most remarkable implication of (11)-(15) is that the compressibility κ of the homogeneous charge ordered
system is negative for densities different from 1/2,

4



1

κ
∝

dµ

dn
= −

dµ

dδ
=

d2E

dδ2
= −

4W 2

3V z
< 0, (16)

where δ = 1/2 − n. This is the manifestation of the tendency toward phase separation characteristic of the charge
ordered system with δ 6= 0. The presence of a kink in the ECO(δ) (cf. Eqs. (12), (14)) implies that one of the states,
into which the system might separate, would correspond to the checkerboard CO state with n = 1/2, whereas the
other would have a certain density n′ smaller or larger than 1/2. This conclusion resembles that of [4] (see also
[10,14]), although the detailed physical mechanism is different. The possibility of phase separation in the model (1)
away from half-filling was also reported earlier in [12] for the infinite-dimensional case. Below we concentrate our
attention on the situation with n < 1/2 (underdoped manganites); the case n > 1/2 apparently has certain special
properties — the existence of stripe phases etc. [13], the detailed origin of which is not yet clear.

It easy to understand the physics of phase separation in our case. As follows from (13), the CO gap decreases linearly
with the deviation from the half-filling. Correspondingly, the energy of the homogeneous CO state rapidly increases,
and it is more favorable to “extract” extra holes from the CO state, putting them into one part of the sample, while
creating the “pure” checkerboard CO state in the other part of it. The energy loss due to such redistribution of holes
is overcompensated by the gain provided by the better charge ordering.

However, the hole-rich regions would not be completely “empty,” like pores (clusters of vacancies) in crystals: we
can gain an extra energy by “dissolving” in them a certain amount of electrons. By doing this we decrease the band
energy of the electrons due to their delocalization. Thus, this second phase would be a metallic one. The simplest
state of this kind is a homogeneous metal with the electron concentration nm. This concentration, as well as the
relative volume of the metallic and CO phases, can be easily calculated by minimizing the total energy of the system.
The energy of the metallic part of the sample Em is given by

Em = −tznm + ct(nm)5/3 + V (nm)2 (17)

where c is some constant.
Minimizing (17) with respect to nm, we find the equilibrium electron density in the metallic phase. For the strong

coupling V > zt, we get

nm0 = tz/2V (18)

Thus, in this simple treatment, the system with nm0 < n < 1/2 would undergo phase separation into the CO phase
with n = 1/2 and the metallic phase with n = nm0. Relative volumes vm and vCO of these phases for arbitrary n can
be found from the Maxwell construction:

vm/vCO = (1/2 − n)/(n − nm0), (19)

from which we find that the metallic phase occupies the part vm of the total volume v given by the relationship

vm/v = (1/2 − n)/(1/2 − nm0), (20)

The metallic phase would occupy the whole sample when the total electron density n is less than nm0.

IV. AN EXAMPLE: THE PHASE SEPARATED STATE WITH METALLIC DROPLETS

As we argued above, the system with the short-range repulsion (1) is unstable toward phase separation for n close
but different from 1/2. The long-range Coulomb forces would however prevent the full phase separation into large
regions containing all extra holes and the pure n = 1/2 charge ordered region. We can avoid this energy loss by
forming, instead of one big metallic phase with many electrons, the finite metallic clusters with smaller number of
them. The limiting case would be a set of spherical droplets, each containing one electron. This state is similar to
magnetic polarons (“ferrons”) considered in the problem of phase separation in doped magnetic insulators [8,14,11].

We present below the estimate for the characteristic parameters of these droplets. The main aim of this treatment is
to demonstrate that the state constructed in such a way will have the energy lower than the energy of the homogeneous
state, even if we treat these droplets rather crudely and do not optimize all their properties. In particular, we will
make the simplest assumption that the droplets have sharp boundaries and that the charge ordered state outside these
droplets is not modified in their vicinity. This state can be treated as a variational one: if we optimize the structure
of the droplet boundary, its energy would only decrease.
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The energy (per unit volume) of the droplet state with the concentration nd of droplets can be written in total
analogy with the ferron energy in the double exchange model (see [14,11]). This yields

Edroplet = −tnd

(

z −
π2a2

R2

)

−
W 2

6V z

[

1 − nd
4

3
π

(

R

a

)3
]

. (21)

Here, a is the lattice constant and R is the droplet radius. The first term in (21) corresponds to the gain in kinetic
energy of electron delocalization inside the metallic droplets, and the second term describes the charge ordering energy
in the remaining insulating part of the sample.

Actually, one should include the surface energy contribution to the total energy of the droplet. The surface energy
should be of the order of W 2R2/V . For large droplets, this contribution is small compared to the term ∝ R3 in (21);
it would also be reduced for a “soft” droplet boundary. One can show that even in the worst case of a small droplet
(of the order of a few lattice constants) with the sharp boundary, this contribution would not exceed about 20 percent
of the bulk contribution. That is why we will ignore this term below.

Minimization of the energy in (21) with respect to R gives

R

a
∝

(

V

t

)1/5

. (22)

The critical concentration ndc corresponds to the configuration where metallic droplets start to overlap, i.e. where
the volume of the CO phase ( the second term in (21)) tends to zero. Hence,

ndc =
3

4π

( a

R

)3

∝

(

t

V

)3/5

. (23)

By comparing (12) with (21), (22), we see that for the deviations from the half-filling 0 < δ ≤ δc = 1/2 − ndc the
energy of the phase separated state is always lower than the energy of the homogeneous charge ordered state. The
energy of the droplet state (21) with the radius given by (22) is also lower than the energy of the fully phase separated
state, obtained by the Maxwell construction from the homogeneous metallic state (17). Correspondingly, the critical
concentration ndc (23) is larger than nm0 (18). There is no contradiction here: the droplet state, which we constructed
has electrons confined in spheres of radius R, and even when these droplets start to overlap at n = ndc, occupying the
whole sample, the electrons in this state, by construction, are still confined within their own spheres and avoid each
other. In other words, in our droplet state certain degree of charge-ordering correlations is still present, decreasing
the repulsion and hence the total energy.

Thus, the energy of a phase separated state with the droplets corresponds to the global minima of the energy for
all 0 < δ ≤ δc. This justifies our conclusion about phase separation into charge ordered state with n = 1/2 and a
metallic state with small spherical droplets.

The situation here resembles that of partially filled strongly interacting Hubbard model, with the CO state corre-
sponding to an antiferromagnetic state of the latter and with the nearest-neighbor interaction V playing the role of the
Hubbard’s U . In both cases, the kinetic energy of doped carriers tends to destroy this “antiferro” or charge ordering,
first “spoiling” it in their vicinity and finally leading to the formation of the metallic state (Nagaoka ferromagnetism).
In the Hubbard model, we also face the situation with phase separation at a small enough doping [21].

Note also that for n > 1/2 the compressibility of the charge- ordered state is again negative 1
κ = d2E

dδ2 = − 4W 2

3V z < 0
and has the same value as for the case n < 1/2. As a result, it is more favorable again to create a phase-separated
state for these densities. However, as it was already mentioned, the nature of the second phase with n > 1/2 is not
quite clear at present, and therefore we do not consider this case here.

V. AN EXTENDED MODEL

Now we can extend the model discussed in the previous sections by taking into account the essential magnetic
interactions. In manganites, besides the conduction electrons in eg bands, there exist also practically localized t2g

electrons, which we now include to our consideration. The corresponding Hamiltonian has the form

Ĥ = −t
∑

<i,j>,σ

c+
iσcjσ + V

∑

<i,j>

ninj − JH

∑

i

Siσi + J
∑

<i,j>

SiSj − µ
∑

i

ni, (24)
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In comparison to (1), the additional terms here correspond to the strong Hund-rule onsite coupling JH between
localized spins S and the spins of conduction electrons σ, and a relatively weak Heisenberg antiferromagnetic (AFM)
exchange J between neighboring local spins. In real manganites, the AFM ordering of the CE type in the CO phase
is determined not only by the exchange of localized t2g electrons but to a large extent by the charge- and orbitally-
ordered eg electrons themselves. For simplicity, we ignore this factor here and assume the superexchange interaction
to be the same both in the CO and in the metallic phases.

It is physically reasonable to consider this model in the limit

JHS > V > W > JS2.

In the absence of the Coulomb term, this is exactly the conventional double exchange model (see e.g. [8,14]). Note that
the absence of doubly occupied sites in (20) is guaranteed by the large Hund’s term. It also favors the metallicity in the
system, since the effective bandwidth in our problem depends upon the magnetic order. Therefore, the estimate for the
critical concentration changes here in comparison to (23). Similar to [14] the metallic droplets will be ferromagnetic
(FM) due to the double exchange. The energy of one such droplet has the form

E = −t

(

z −
π2a2

R2

)

−
W 2

6V z

[

1 −
4

3
π

(

R

a

)3
]

+ (25)

+ zJS2 4

3
π

(

R

a

)3

− zJS2

[

1 −
4

3
π

(

R

a

)3
]

.

The last two terms in (25) describe respectively the loss in the energy of the Heisenberg AFM exchange inside the
FM metallic droplets and the gain of this energy in the AFM insulating part of the sample. The minimization with
respect to the droplet radius (as in (21)) yields

R

a
∝

(

t

V
+

JS2

t

)−1/5

. (26)

Note that at t/V ≪ JS2/t, formula (26) gives just the same estimate for the radius of FM metallic droplet
(R/a) ∼ (t/JS2)1/5 as in [8,14].

In the opposite limit when (t/V ) ≫ JS2/t, we reproduce the same result (R/a) ∼ (V/t)1/5 as in (22). Finally,
critical concentration nc is estimated as follows

nc ∝

(

t

V
+

JS2

t

)3/5

. (27)

As a result, taking into account also the tendency to the phase separation at very small values of n [8–11,14] we
come to the following phase diagram for the extended model (cf. [11]:

1. At 0 < n <
(

JS2

t

)3/5

, it corresponds to the phase separation into a FM metal with n = n′ > 0 embedded in

the AFM insulating matrix (n = 0). To minimize the Coulomb energy, it may be again favorable to split this
metallic region into droplets with the concentration n′ and an average radius given by Eq. (26) with t/V = 0,
each containing one electron and kept apart from one another.

2. At
(

JS2

t

)3/5

< n <
(

t
V + JS2

t

)3/5

< 1/2, the system is a FM metal. Of course, we need a window of parameters

to satisfy the inequality in the right-hand side. In actual manganites where t/V ∼ 1/2 ÷ 1/3 and J/t ∼ 1/3,
these conditions upon n are not necessarily satisfied. Experiments suggest that this window is present for
La1−xCaxMnO3, but it is definitely absent for Pr1−xCaxMnO3 [11];

3. Finally, at
(

t
V + JS2

t

)3/5

< n < 1
2 , we have the phase separation in the form of FM metallic droplets inside the

AFM charge ordered matrix.

This phase diagram is in a good qualitative agreement with many available experimental results for real manganites
[22]– [25], in particular with the observation of the small-scale phase separation close to 0.5 doping [26]. Note also that
our phase diagram has certain similarities with the phase diagram obtained in [28,29] for the problem of spontaneous
ferromagnetism in doped excitonic insulators.
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VI. CONCLUSION

Summarizing, we have shown that the narrow-band system, which has the checkerboard charge ordering at n = 1/2
(corresponding to the doping x = 0.5) is unstable toward phase separation away from half-filling (n 6= 1/2). It
separates into the regions with the ideal CO (n = 1/2) and the other regions, in which extra electrons or holes are
trapped. The simplest form of these metallic regions could be spherical metallic droplets embedded into the CO
insulating matrix. Simple considerations allow us to estimate the size of these droplets and the critical concentration,
or doping xc = 1/2 − δc, at which the metallic phase would occupy the whole sample and the CO phase would
disappear. The account of the magnetic interactions does not change these conclusions but somewhat modifies the
characteristic parameters of the metallic droplets.

The long-range Coulomb interaction may also modify the results, but we do not expect any qualitative changes.
For the realistic values of parameters, the size of metallic droplets is still microscopic (about 10–30 Å), and the excess
charge in them will be rather small.

The obtained picture corresponds rather well to the known properties of 3D and layered manganites close to (less
than) half doping, x ≤ 1/2. Percolation picture of transport properties emerging from this treatment is confirmed
by the results reported in [7,15,22,24–26]; moreover the coexistence of ferromagnetic reflections and those of the CE
type magnetic structure typical of the CO state at x = 0.5 were observed by the neutron scattering [27]. Thus, the
general behavior of underdoped manganites (x ≤ 0.5) is in a good qualitative agreement with our results.

Our treatment leads to the same tendency to phase separation (instability of the homogeneous CO phase) also for
overdoped regime, x > 0.5. What would be the second phase in this case, is not yet clear. Therefore we did not
concentrate our attention on such a situation.

Our treatment is applicable also to other systems with the charge ordering, such as cobaltites [18] and nicke-
lates [19]. It would be interesting to study them for charge carrier concentrations different from the commensurate
“checkerboard” one

A number of important problems still remain unsolved (the origin of the “in-phase” ordering in perovskite man-
ganites in c-direction, the detailed description of inhomogeneous states in overdoped regime n > 1/2, the behavior at
finite temperatures). Nevertheless, in spite of the introduced simplifications, our model seems to capture the essential
physics underlying the interplay between phase separation and charge ordering in transition metal oxides.

ACKNOWLEDGMENTS

We are grateful to N.M. Plakida and M.S. Mar’enko for stimulating discussions. D.Kh. expresses gratitude to S.-
W. Cheong and Y. Moritomo for the discussions of the experimental aspects of the problem. The work was supported
by INTAS (grants 97–0963 and 97–11954) and by the Russian-Dutch Program for Scientific Cooperation funded
by the Netherlands Organization for Scientific Research (NWO). M.Yu.K. acknowledges the support of the Russian
President Program (grant 96–15–9694). The work of D.Kh. was also supported by the Netherlands Foundation for
the Fundamental Research of Matter (FOM) and by the European network OXSEN.

[1] E. Verwey, Nature (London) 144 327 (1939); E. Verwey and P.W. Haayman, Physica 8, 979 (1941).
[2] D.I. Khomskii, Preprint of the P.N. Lebedev Physics Institute no. 105 (1969).
[3] T. Mutou and H. Kontani, Phys. Rev. Lett. 83, 3685 (1999).
[4] J. van den Brink, G. Khaliullin, and D. Khomskii, Phys. Rev. Lett. 83, 5118 (1999).
[5] G. Jackeli, N.B. Perkins, and N.M. Plakida, cond-mat/9910391; Phys. Rev. B (in press).
[6] Z. Jirak et al. J. Magn. Magn. Mater. 53, 153 (1985).
[7] A. Arulraj et al., Phys. Rev. B 56 R8115.(1998); M. Uehara et al. Nature 399, 560 (1999).
[8] E.L. Nagaev, Usp. Fiz. Nauk 166, 833 (1996) [Phys. - Uspekhi 39, 781 (1996)].
[9] A. Moreo, S. Yunoki, and E. Dagotto, Science 283, 2034 (1999).

[10] D. Arovas and F. Guinea, Phys. Rev. B 58, 9150 (1998).
[11] D.I. Khomskii, Physica B 280, 325 (2000).
[12] G.S. Uhrig and R. Vlamink, Phys. Rev. Lett. 71, 271 (1993).

8

http://arxiv.org/abs/cond-mat/9910391


[13] S. Mori, C.H. Chen, and S.-W. Cheong, Nature (London) 392, 473 (1998).
[14] M.Yu. Kagan, D.I. Khomskii, and M.V. Mostovoy, Eur. Phys. J. B 12, 217 (1999).
[15] L.P. Gor’kov and V.Z. Kresin, JETP Letters 67, 985 (1998).
[16] S. Yunoki, T. Hotta, and E. Dagotto, Phys. Rev. Lett. 84, 3714 (2000).
[17] I.V. Soloviev and K. Terakura, Phys. Rev. Lett. 83, 2825 (1999).
[18] Y. Moritomo, M. Takeo, X.J. Liu, T. Akimoto, and A.Nakamura, Phys. Rev. B 58, R13334 (1998).
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