23 research outputs found

    Regression of advanced diabetic nephropathy by hepatocyte growth factor gene therapy in rats

    Get PDF
    Diabetic nephropathy is the main cause of end-stage renal disease requiring dialysis in developed countries. In this study, we demonstrated the therapeutic effect of hepatocyte growth factor (HGF) on advanced rather than early diabetic nephropathy using a rat model of streptozotocin-induced diabetes. Early diabetic nephropathy (16 weeks after induction of diabetes) was characterized by albuminuria, hyperfiltration, and glomerular hypertrophy, whereas advanced diabetic nephropathy showed prominent transforming growth factor (TGF)-beta1 upregulation, mesangial expansion, and glomerulosclerosis. An SP1017-formulated human HGF (hHGF) plasmid was administered by intramuscular injection combined with electroporation over a 30-day follow-up in rats with early and advanced diabetic nephropathy. hHGF gene therapy upregulated endogenous rat HGF in the diabetic kidney (rat HGF by RT-PCR was threefold higher than in diabetic rats without therapy). hHGF gene therapy did not improve functional or morphologic abnormalities in early diabetic nephropathy. hHGF gene therapy reduced albuminuria and induced strong regression of mesangial expansion and glomerulosclerosis in advanced diabetic nephropathy. These findings were associated with suppression of renal TGF-beta1 and mesangial connective tissue growth factor (CTGF) upregulation, inhibition of renal tissue inhibitor of metalloproteinase (TIMP)-1 expression, and reduction of renal interstitial myofibroblasts. In conclusion, our results suggest that hHGF gene therapy may be considered as an innovative therapeutic strategy to treat advanced diabetic nephropathy

    Different Storing and Processing Conditions of Human Lymphocytes do not Alter P-Glycoprotein Rhodamine 123 Efflux

    Full text link
    P-glycoprotein (Pgp), a protein codified by Multi Drug Resistance (MDR1) gene, has a detoxifying function and might influence the toxicity and pharmacokinetics and pharmacodynamics of drugs. Sampling strategies to improve Pgp studies could be useful to optimize the sensitivity and the reproducibility of efflux assays. This study aimed to compare Pgp expression and efflux activity by measuring Rhodamine123 (Rh123) retention in lymphocytes stored under different conditions, in order to evaluate the potential utility of any of the storing conditions in Pgp functionality. Our results show no change in protein expression of Pgp by confocal studies and Western blotting, nor changes at the mRNA level (qRT-PCR). No differences in Rh123 efflux by Pgp activity assays were found between fresh and frozen lymphocytes after 24 hours of blood extraction, using either of the two Pgp specific inhibitors (VP and PSC833). Different working conditions in the 24 hours post blood extraction do not affect Rh123 efflux. These results allow standardization of Pgp activity measurement in different individuals with different timing of blood sampling and in different geographic areas. ______________

    Hypoxia stimulus: An adaptive immune response during dendritic cell maturation

    Get PDF
    The ‘injury hypothesis’ in organ transplantation suggests that ischemia–reperfusion injury is involved in the adaptative alloimmune response. We previously found that a strong immune/inflammatory response was induced by ischemia during kidney transplantation in rats. We show here that immature dendritic cells (DCs) undergo hypoxia-mediated differentiation comparable to allogeneic stimulation. Hypoxia-differentiated DCs overexpress hypoxia inducible factor-1α (HIF-1α) and its downstream target genes, such as vascular endothelial growth factor or glucose transporter-1. Rapamycin attenuated DC differentiation, HIF-1α expression, and its target gene expression in a dose-dependent manner along with downregulated interleukin-10 secretion. Coculture of hypoxia-differentiated DCs with CD3 lymphocytes induced proliferation of lymphocytes, a process also neutralized by rapamycin. Furthermore, in vivo examination of ischemia–reperfusion-injured mouse kidneys showed a clear maturation of resident DCs that was blunted by rapamycin pretreatment. Our results suggest that hypoxia is a central part of the ‘injury hypothesis’ triggering DC differentiation under hypoxic conditions. Rapamycin attenuates the hypoxic immune-inflammatory response through inhibition of the HIF-1α pathway

    Regression of advanced diabetic nephropathy by hepatocyte growth factor gene therapy in rats

    No full text
    Diabetic nephropathy is the main cause of end-stage renal disease requiring dialysis in developed countries. In this study, we demonstrated the therapeutic effect of hepatocyte growth factor (HGF) on advanced rather than early diabetic nephropathy using a rat model of streptozotocin-induced diabetes. Early diabetic nephropathy (16 weeks after induction of diabetes) was characterized by albuminuria, hyperfiltration, and glomerular hypertrophy, whereas advanced diabetic nephropathy showed prominent transforming growth factor (TGF)-beta1 upregulation, mesangial expansion, and glomerulosclerosis. An SP1017-formulated human HGF (hHGF) plasmid was administered by intramuscular injection combined with electroporation over a 30-day follow-up in rats with early and advanced diabetic nephropathy. hHGF gene therapy upregulated endogenous rat HGF in the diabetic kidney (rat HGF by RT-PCR was threefold higher than in diabetic rats without therapy). hHGF gene therapy did not improve functional or morphologic abnormalities in early diabetic nephropathy. hHGF gene therapy reduced albuminuria and induced strong regression of mesangial expansion and glomerulosclerosis in advanced diabetic nephropathy. These findings were associated with suppression of renal TGF-beta1 and mesangial connective tissue growth factor (CTGF) upregulation, inhibition of renal tissue inhibitor of metalloproteinase (TIMP)-1 expression, and reduction of renal interstitial myofibroblasts. In conclusion, our results suggest that hHGF gene therapy may be considered as an innovative therapeutic strategy to treat advanced diabetic nephropathy

    Regression of advanced diabetic nephropathy by hepatocyte growth factor gene therapy in rats

    No full text
    Diabetic nephropathy is the main cause of end-stage renal disease requiring dialysis in developed countries. In this study, we demonstrated the therapeutic effect of hepatocyte growth factor (HGF) on advanced rather than early diabetic nephropathy using a rat model of streptozotocin-induced diabetes. Early diabetic nephropathy (16 weeks after induction of diabetes) was characterized by albuminuria, hyperfiltration, and glomerular hypertrophy, whereas advanced diabetic nephropathy showed prominent transforming growth factor (TGF)-beta1 upregulation, mesangial expansion, and glomerulosclerosis. An SP1017-formulated human HGF (hHGF) plasmid was administered by intramuscular injection combined with electroporation over a 30-day follow-up in rats with early and advanced diabetic nephropathy. hHGF gene therapy upregulated endogenous rat HGF in the diabetic kidney (rat HGF by RT-PCR was threefold higher than in diabetic rats without therapy). hHGF gene therapy did not improve functional or morphologic abnormalities in early diabetic nephropathy. hHGF gene therapy reduced albuminuria and induced strong regression of mesangial expansion and glomerulosclerosis in advanced diabetic nephropathy. These findings were associated with suppression of renal TGF-beta1 and mesangial connective tissue growth factor (CTGF) upregulation, inhibition of renal tissue inhibitor of metalloproteinase (TIMP)-1 expression, and reduction of renal interstitial myofibroblasts. In conclusion, our results suggest that hHGF gene therapy may be considered as an innovative therapeutic strategy to treat advanced diabetic nephropathy

    Delayed mTOR inhibition with low dose of everolimus reduces TGFβ expression, attenuates proteinuria and renal damage in the renal mass reduction model

    Get PDF
    The immunosuppressive mammalian target of rapamycin (mTOR) inhibitors are widely used in solid organ transplantation, but their effect on kidney disease progression is controversial. mTOR has emerged as one of the main pathways regulating cell growth, proliferation, differentiation, migration, and survival. The aim of this study was to analyze the effects of delayed inhibition of mTOR pathway with low dose of everolimus on progression of renal disease and TGFβ expression in the 5/6 nephrectomy model in Wistar rats
    corecore