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Abstract

Background: The immunosuppressive mammalian target of rapamycin (mTOR) inhibitors are widely used in solid organ
transplantation, but their effect on kidney disease progression is controversial. mTOR has emerged as one of the main
pathways regulating cell growth, proliferation, differentiation, migration, and survival. The aim of this study was to analyze
the effects of delayed inhibition of mTOR pathway with low dose of everolimus on progression of renal disease and TGFb
expression in the 5/6 nephrectomy model in Wistar rats.

Methods: This study evaluated the effects of everolimus (0.3 mg/k/day) introduced 15 days after surgical procedure on
renal function, proteinuria, renal histology and mechanisms of fibrosis and proliferation.

Results: Everolimus treated group (EveG) showed significantly less proteinuria and albuminuria, less glomerular and
tubulointerstitial damage and fibrosis, fibroblast activation cell proliferation, when compared with control group (CG), even
though the EveG remained with high blood pressure. Treatment with everolimus also diminished glomerular
hypertrophy. Everolimus effectively inhibited the increase of mTOR developed in 5/6 nephrectomy animals, without
changes in AKT mRNA or protein abundance, but with an increase in the pAKT/AKT ratio. Associated with this inhibition,
everolimus blunted the increased expression of TGFb observed in the remnant kidney model.

Conclusion: Delayed mTOR inhibition with low dose of everolimus significantly prevented progressive renal damage and
protected the remnant kidney. mTOR and TGFb mRNA reduction can partially explain this anti fibrotic effect. mTOR can be a
new target to attenuate the progression of chronic kidney disease even in those nephropathies of non-immunologic origin.

Citation: Kurdián M, Herrero-Fresneda I, Lloberas N, Gimenez-Bonafe P, Coria V, et al. (2012) Delayed mTOR Inhibition with Low Dose of Everolimus Reduces
TGFb Expression, Attenuates Proteinuria and Renal Damage in the Renal Mass Reduction Model. PLoS ONE 7(3): e32516. doi:10.1371/journal.pone.0032516

Editor: Christos Chatziantoniou, Institut National de la Santé et de la Recherche Médicale, France
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Introduction

In the last few years, mTOR inhibitors such as rapamycin or its

derivative everolimus are increasingly used as potent immunosup-

pressants in renal and cardiac transplant therapy [1].

Chronic allograft nephropathy (CAN) is the main cause of renal

allograft loss after one year of transplantation. Despite the impact

of modern immunosuppression on reducing acute graft rejection,

there has been little impact in long term graft survival [2,3]. Some

investigators propose that mTOR inhibitors can contribute on

reducing CAN progression [4].

Although the pathogenesis of chronic damage responsible for

CAN is still largely unclear both immune and non-immune

mechanisms may participate and they are characterized by an

inflammatory response and the subsequent release of profibrotic

cytokines and growth factor within the kidney [5]. Chronic

interstitial fibrosis, tubular atrophy, vascular occlusive changes and

glomerulosclerosis are the common final pathway leading to

progressive renal dysfunction and to end stage renal failure [6].

Profibrotic mediators such as TGFb mainly produced by epithelial

cells, may prime their transdifferentiation into fibroblasts and their

subsequent activation, directly leading to interstitial fibrosis [7].
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TGFb also stimulates matrix production and reduces its

degradation. The severity of tubulointerstitial inflammation and

fibrosis have long been considered as crucial determinants in the

pathogenesis of renal fibrosis and in long-term prognosis of both

human and experimental chronic nephropathies regardless of the

initial cause [8,9].

mTOR is a major downstream component in the phosphoino-

sitide 3-kinase pathway (PI3K), and has emerged as one of the main

signalling routes utilized by cells to control their growth, prolifer-

ation, differentiation, migration, organization and survival [10].

In addition to lymphocytes, mTOR inhibitors act as anti

proliferative for several other cell types such as vascular smooth

muscle cells, mesangial, tubular and endothelial cells. Massive

urinary protein excretion has been observed in renal transplant

recipients with CAN after conversion from calcineurin inhibitors

to mTOR inhibitors, especially sirolimus [11]. High range

proteinuria has been observed during sirolimus therapy in patients

who received sirolimus de novo [12,13]. Podocyte injury and focal

segmental glomerulosclerosis have been related to mTOR

inhibition in some patients, but the pathways underlying these

lesions remain hypothetic [14,15].

Controversy exists about the beneficial effects of mTOR

inhibition in experimental nephropathies with some reports

showing that it may be useful to diminish progression [16,17]

and others reporting increase in proteinuria and aggravation of

renal disease [18,19].

The model of mass reduction with right nephrectomy plus

ligation of two branches of the left renal artery (5/6 nephrectomy)

has been extensively used to study renal disease progression. Rats

with 5/6 nephrectomy develop severe hypertension, proteinuria

and progression to end stage renal disease [20–22].

The effect of mTOR inhibitors on disease progression in this

model also is controversial. Diekmann et al [23] have reported that

mTOR inhibitors reduce progression, whereas Vogelbacher et al

[19], using the same experimental model, reported that everolimus

worsened chronic disease progression.

The aim of this study was to analyze the effects of delayed

mTOR inhibition on progression of renal disease in the 5/6

nephrectomy model in Wistar rats, using a low dose of everolimus

introduced 2 weeks after nephrectomy and to evaluate its effects

on fibrosis mediators as TGFb.

Results

Everolimus treatment decreased proteinuria and
albuminuria without changes in blood pressure

Blood pressure, BUN, plasma creatinine, plasma bicarbonate

and proteinuria were significantly lower and creatinine clearance

was significantly higher in sham group (SG) when compared with

control group (CG) and everolimus-treated group (EveG) (table 1).

There were no differences in blood pressure, plasma creatinine

and creatinine clearance in CG vs EveG. Anyway, EveG showed

significant lower proteinuria (142.3694.8 vs 279.36125.3 mg/

day, p,0.05), protein creatinine ratio (14.4568.48 vs

28.367.47 mg/mg, p,0.05) and urine albumin (6.8364.6 vs

12.964.9 mg/ml, p,0.05) than CG (table 1).

Everolimus diminished glomerulosclerosis and
tubulointerstitial damage in the remnant kidney

Histological analysis showed less glomerulosclerosis (GS) in

EveG compared with CG when evaluated with PAS stain

(0.360.43 vs. 1.460.73, p,0.05), and with Masson’s stain

(0.4760.45 vs. 1.2560.8, p,0.05). There was also less tubuloin-

terstitial (TI) damage in EveG compared with CG (2.4661.49 vs.

6.5361.07, p,0.05) in PAS stain and in Masson’s stain (0.160.09

vs. 0.2460.16, p,0.05) (Figure 1 and table 2).

Proteinuria is related with the magnitude of tubulointerstitial

(TI) damage. When we considered all the animals together, the

relationship between proteinuria (mg/day) and TI score, evaluated

by Masson’s stain, showed a regression coefficient of 0.86, (R2

0.73 p,0.05).

Everolimus diminished glomerular hypertrophy,
mesangial fibrosis and tubulointerstitial fibrosis in the
remnant kidney

Renal fibrosis was also assessed by morphometric analysis of

renal tissue stained with Sirius red. Data from morphometric

analysis are given as mean 6 SD and as frequency distribution, as

fibrosis develops in a focal and segmental pattern and its

distribution does not show a gaussian pattern. Figure 2A reveals

that the CG has a more intense staining with Sirius red than the

SG group, being the staining in EveG lower that in CG.

Frequency distribution of glomerular area shows that SG have

the cross-sectional area of all the glomeruli assessed grouped

10000 mm2, whereas CG and EveG showed a wider distribution,

with almost all values over 12000 mm2 (Figure 2b).

The CG showed a higher glomerular area than the SG

(2140566612 vs 1055361985 mm2, p,0.05) whereas treatment

with everolimus significantly diminished glomerular hypertrophy

(1813265056 mm2) although it remained significantly higher than

the SG (p,0.05) (fig. 2b).

Figure 2c reveals that data of glomerular (mesangial) fibrosis in

the SG group was grouped around 200 mm2 whereas data of

mesangial fibrosis in CG group showed a widespread distribution

with higher values, and data from the EveG showed more grouped

data around 400 mm2. Statistical analysis reveals that the CG

showed more mesangial fibrosis than the SG (1153.76566.2 vs

185.66104.8 mm2 p,0.05). Treatment with everolimus signifi-

cantly diminished mesangial fibrosis when compared with CG

(429.66283.9 vs 1153.76566.2. mm2, p,0.05).

Figure 2d shows that the changes in tubulo-interstitial fibrosis in

the studied groups show changes similar to those observed in

glomerular fibrosis. The CG showed significantly more interstitial

fibrosis than SG (2823.361424.2 vs. 483.56305.1 mm2, p,0.05),

and the group treated with everolimus showed lower interstitial

fibrosis than CG (897.46499.6 mm2, p,0.05) although it was

significantly higher than the SG (p,0.05) (Figure 2).

Table 1. Weight, blood pressure, renal function, proteinuria
and microalbuminuria from animals at week 8 of treatment.

SG CG EveG

n = 7 n = 11 n = 8

Weight, g 360.6628.4 353.3648 355.6626

Blood Pressure, mmHg 125 615 162625* 161625*

Left Kidney weight, g 1.460.2 2.760.8* 2.2560.36*

BUN, mg/dl 2167 49640 40611

Creatininep, mg/dl 0.460.1 0.7860.48 0.6460.13

Cr Cl, ml/min 0.5260.2 0.3460.11* 0.3260.12*

Proteinuria, mg/d 11.3613 279.36125* 142695*{

Albuminuria, mg/ml wo/d 12.964.9 6.8364.6{

uPCR, mg/mg 0.9661.1 28.367.47* 14.4568.48*{

doi:10.1371/journal.pone.0032516.t001
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Figure 1. Immunohistochemistry: fibrosis, cell proliferation and inflamation. Representative results from the different groups are shown:
Sham Group (A,D,G,J), Control Group (B,E,H,K) and Everolimus Group (C,F,I,L). PAS tinction (A,B,C) (magnification 2006), Immunohistochemistry for a
smooth muscle actin (2006) (D,E, F), Glomerular and tubulointerstitial proliferating cell nuclear antigen (PCNA) immunostaining (2006) (G,H,I) and
anti CD68 (4006) (J,K,L). Sections were counterstained with eosin.
doi:10.1371/journal.pone.0032516.g001

Table 2. Histological and immunohistochemistry semiquantitative analysis.

Stains SG CG EveG

n = 7 n = 11 n = 8

Periodic Acid-Schiff G 0.0660.09 1.4060.73* 0.3060.43*{

TI 0.0060.00 6.5361.07* 2.4661.49*{

Masson’s trichrome GS 0.0060.00 1.2560.80* 0.4760.45*{

TIF 0.0060.00 0.2460.16* 0.1060.09*{

Sirius Red MF 185.66104. 1153.76566.2* 0.73* 429.66283.9*{

IF 483.56305.1 2823.361424.2 1424.2* 897.46499.6*{

a-Actine G 0.0160.02 0.8660.71* 0.1960.14*{

TI 0.0060.00 2.0660.55* 1.0360.52*{

PCNA G 0.0560.05 6.0065.37* 2.963*{

TI 0.560.5 51.60629,0* 20620*{

CD-68 I NA 5.6863.85 5.0565.48

doi:10.1371/journal.pone.0032516.t002
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Figure 2. Morphometric analysis of glomerular hypertrophy and kidney fibrosis. Panel A. Representative images from histological sections
stained with Sirius red: Sham Group (A), Control Group (B) and Everolimus Group (C) (magnification 2006). Panel B. Glomerular area (media and SD)
and frequency distribution diagram of glomerular area. Panel C. Mesangial fibrosis area (mean and SD) and frequency distribution diagram of
mesangial fibrosis area in the three groups. Panel D. Tubulointerstitial fibrosis area (mean and SD) and frequency distribution diagram of
tubulointerstitial fibrosis area in the three groups. * p,0.05 vs sham group and {p,0.05 vs control group.
doi:10.1371/journal.pone.0032516.g002
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Everolimus diminished the expression of a smooth
muscle actin and cellular proliferation

We evaluated the effect of everolimus on glomerular expression

and TI expression of asmooth muscle actin. The EveG showed less

staining at glomerular level (0.1960.14 vs 0.8660.71, p,0.05)

and TI level (1.0360.52 vs 2.0660.55, p,0.05) when compared

with CG (Figure 1 and table 2).

Glomerular and TI PCNA staining was significantly reduced in

the EveG compared with CG (2.963 vs 665.37, p,0.05) and

(20620 vs 51.6629, p,0.05) respectively (Figure 1).

There were no differences in macrophage infiltration measured

by CD68 staining (Figure 1).

mTOR mRNA increased in the remnant kidney model and
it was attenuated with Everolimus treatment

mTOR mRNA is over expressed more than 4-fold in CG when

compared with SG (3.9561 UR vs 1.1960.7 UR, p,0.05). This

increase is blunted in the EveG (1.261 UR vs GC, p,0.05)

(Figure 3). There were no differences in Akt mRNA among the

three groups (SG: 1.1360.8, CG: 1.560.8 and EveG: 1.260.3).

pAkt/tAkt protein abundance ratio was significantly higher in CG

(151.5617) and EveG (169618.4) than SG (100612, p,0.05) but

without differences among them (Figure 3 and Figure 4).

Everolimus blunted the increased expression of TGFb
observed in the remnant kidney model

TGFb mRNA significantly increased in the CG when

compared with SG (4.762.8 vs 0.860.4 UR, p,0.05). TGFb in

the EveG returned to the SG levels of expression (0.860.4 UR,

p,0.05 vs GC) (Figure 4).

There were no differences in pERK/ERK ratio among the

different groups.

Discussion

Treatment with everolimus 0.3 mg/kg/day for 8 weeks starting

two weeks after 5/6 nephrectomy significantly reduced protein-

uria, albuminuria, glomerular and tubulo-interstitial fibrosis,

fibroblast proliferation and/or activation, and cellular prolifera-

tion.

It also significantly diminished glomerular hypertrophy. Rovira

et al showed that sirolimus treatment before 5/6 nephrectomy

diminished glomerular hypertrophy but the treatment after

nephrectomy was unable to reduce hypertrophy [24]. As far as

we know this is the first evidence that everolimus given after 5/6

nephrectomy reduced glomerular hypertrophy, one of the main

contributors to glomerulosclerosis in this model [24].

As the fibrosis process develops in a focal and segmental pattern

we decided to show the frequency distribution of fibrosis areas in

the tissue (panels b, c and d, figure 2). These graphics allows us to

visualize the magnitude of fibrosis in the different experimental

groups.

There were no differences in renal function between CG and

EveG, probably related with the limited follow up time in our

model. Other authors using a rat model of polycystic kidney

disease were able to show preservation of renal function after

prolonged treatment with rapamycin [25].

We found a fourfold increase in mTOR mRNA expression in

the remnant kidney model compared with SG. Treatment with

everolimus significantly prevented this increase. We can speculate

that this inhibition of mTOR mRNA is related with the known

Figure 3. Western blot and protein abundance ratio for pAkt/
tAkt and pERK/tERK. A) Inmunoblotting analysis for Total Akt 1–2
and phospho-Akt (Ser473); B) Densitometric analysis of pAkt/total Akt:
SG (n = 7), CG (n = 5) and EveG (n = 6); C) Inmunoblotting analysis for
ERK 1/2 and p-ERK (E-4), D) Densitometric analysis of pERK/total ERK. SG
(n = 7), CG (n = 5) and EveG (n = 6). * p,0.05 vs sham group.
doi:10.1371/journal.pone.0032516.g003

Figure 4. mRNA expression for Akt, mTOR and TGF b. Relative mRNA expression levels of Akt, mTOR and TGF b were assessed by real time
quantitative reverse transcriptase-PCR in remnant kidneys of SG (n = 7), CG (n = 5) and EveG (n = 7). *p,0.05 vs sham, **p,0.05 vs CG.
doi:10.1371/journal.pone.0032516.g004
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transcriptional downregulation effect of mTOR inhibition. In this

way mTOR inhibitors prevented the production of new mTOR,

diminishing the amount of mTOR available for new mTOR

complex formation.

The increase in mTOR mRNA in the remnant kidney model

can play a key role in progression of renal disease. mTOR

phosphorylation increases mRNA translation via activation of S6

kinase 1 (S6K1) and inhibition of the eukaryotic initiation factor

4E–binding protein1 (4E-BP1), enhancing protein production and

cell proliferation [26,27].

The well known increase in mRNA TGFbexpression observed

in the remnant kidney model [28,29] is completely blunted by

everolimus. These results contrast with nephrotoxicity models in

normal rats, in which sirolimus increases TGFb [30]. TGFb
inhibition can partially explain the observed anti-fibrotic effects of

everolimus. These results are in accordance with the referred

effects of mTOR inhibition in fibroblast activation by TGFb [27].

Junaid showed, in the 5/6 nephrectomy model, an increase in

mRNA TGFb and protein abundance for TGFb by elisa, when

compared with the sham group. This increase was blocked with

losartan [22].

Recent reports indicate that one of the most relevant

noncanonical TGFb¿ pathways is mTORC1 [31], giving more

relevance to our findings that mTOR inhibition can affect TGFb
production and signalling.

We found a significant increase in pAkt/tAkt(308) ratio in the

CG, consistent with the stimulation off mTOR signaling pathway

and also mTORC2 in this model. Recently Sarbassov showed that

prolonged exposition to rapamycin is able to inhibit mTORC2

[32]. We were not able to show this inhibition as the treatment

with everolimus didn’t modified Akt phosphorilation. One

alternative explanation to Sarbassov’s findings may be that a

prolonged exposition to mTOR inhibitors can reduce mTOR

availability by means of mTOR mRNA reduction.

On the other hand, Vogelbacher et al [19] using the same

experimental model reported that everolimus (2,5 mg/kg/d)

introduced 3 days after nephrectomy worsened chronic disease

progression. These results were the consequence of a markedly

increased fraction of glomeruli with a defective glomerular

architecture in the everolimus group. Everolimus apparently

inhibited the glomerular repair reaction via proliferative activity

inhibition of the glomerular endothelial and mesangial cells and it

was associated with reduced glomerular vascular endothelial

growth factor mRNA and protein abundance [19]. A recent

review [33] highlighted that rapamycin delays recovery and repair

of experimental acute kidney Injury [34] and causes and/or

exacerbates delay graft function [35].

We used a dose of everolimus more than 8 folds lower than

Vogelbacher et al [19]. Dose election was based in preliminary

data using different doses (5, 3, 1 and 0.3 mg/kg/day). The

animals treated with higher doses showed higher mortality rate

and severe adverse effects: diarrhea, weight loss, arrest in wounds

healing, and encapsulated abdominal abscess that were not

observed with 0.3 mg/kg/day.

We believe that the earlier introduction of high dose everolimus

can not only aggravate a pre existent nephropathy but can also

produce a new and more aggressive experimental model of

nephropathy. Letavernier et al., reported that high sirolimus levels

may induce focal and segmental glomerulosclerosis de novo [36].

Our results are in accordance with those reported by other groups

working with the same model. Diekmann et al reported that

animals treated with sirolimus had less glomerulosclerosis,

tubulointerstitial damage and attenuated the increased expression

of renal vascular endothelial growth factor [23]. Nakagawa et al.

described that everolimus administration suppressed smooth

muscle a actin, macrophage infiltration and kidney injury

molecule-1expression in the proximal tubules [37]. Torras et al.

demonstrated a higher glomerular podocin and nephrin expres-

sion and amelioration of glomerular ultrastructural damage in the

rapamycin group [15].

Beneficial effects of mTOR inhibitors were also reported in

anti-thy1 nephritis [17], in experimental membranous nephrop-

athy [38], in adriamycin induced nephropathy [39], in unilateral

obstructive uropathy [40] and in the murine model of renal

polycystic disease [41]. In diabetes induced by streptozotocin [16]

sirolimus treatment produced a reduction of albuminuria and the

expression of renal mTOR and TGFb.

Our findings provide in vivo evidence that everolimus signifi-

cantly prevented progressive renal fibrosis and protected the

remnant kidney in an experimental model of reduced renal mass.

In order to obtain these beneficial effects everolimus should be

administrated after the acute effects of renal ablation and

reparation have taken effect and in a lower dose than previously

described.

The mTOR and TGFb inhibition can partially explain the anti

fibrotic effects produced by everolimus.

This study supports that mTOR can be a possible new target to

attenuate the progression of chronic kidney disease [4].

Methods

Model and experimental design
All the animals were handled according to the Principles of the

Laboratory Animal Care (National Institutes of Health, 1985).

The experimental protocol was approved by the University

Animal Experimental Committee and by the local ethic

committee. The animals were housed in individual cages in a

constant-temperature room with 12:12-h dark-light and free access

to water and food with a normal protein diet (24%). Rats were

anesthetized with sodium thiopental 35 mg/kg i/p for all surgical

procedures.

Male Wistar rats with an initial body weight of 300630 g were

used for this study. Initially, simultaneous systolic blood pressure

and pulse in the awake animal were registered by the tail cuff

method using CVMS-20 software (World Precision Instruments,

Sarasota, FL, USA).

Rats were randomly assigned to 3 groups. Two of these groups

underwent 5/6 nephrectomy by selective ligation of renal artery

branches followed by contra lateral nephrectomy. SG underwent

abdominal incision and manipulation of both kidneys without

excision.

Two weeks after nephrectomy the EveG received everolimus

0.3 mg/kg/day or vehicle for CG, administered by daily gavages

during 8 weeks. Dose election was based in a preliminary study

using different doses (5, 3, 1 and 0.3 mg/kg/day). The animals

treated with higher doses showed higher mortality rate and severe

adverse effects: diarrhea, weight loss, arrest in wounds healing, and

encapsulated abdominal abscess that were not observed with

0.3 mg/kg/day. Meanwhile, recent reports have described the use

of a lower dose of everolimus in order to reduce mortality [42].

Everolimus for oral administration was provided by Novartis

Pharmaceuticals, Inc.

Functional and Histological studies
The rats were assigned to 3 groups: SG (n = 7), CG (n = 11) and

EveG (n = 8). After 8 weeks of treatment 24 hours urine collection

was performed and simultaneous systolic blood pressure and pulse

were registered. The remnant left kidney was immediately

mTOR Inhibition Reduces Renal Disease Progression
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perfused with phosphate-buffered saline at 4uC and 4% parafor-

maldehyde, and stored for renal morphology and immunohisto-

chemistry studies.

Serum creatinine, BUN, plasma bicarbonate, urinary protein,

albumin, low weight molecular protein excretion and creatinine

clearance were determined.

Sample storage for RNA and protein extraction purposes
We performed the same experimental procedure with three new

groups of animals: SG (n = 7), CG (n = 5) and EveG (n = 7) to

obtain renal tissue for real time RT PCR and Western blot. At

week 8 remnant kidney was perfussed with cold PBS. The kidney

was removed and renal cortex excised, snap-frozen in liquid

nitrogen and stored at 280uC until processing.

Analytical methods
Serum and urinary creatinine were measured by the buffered

kinetic Jaffe reaction. BUN was determined by spectrophotometric

method, plasma bicarbonate with a blood analyzer (ABL 700,

Radiometer, Copenhagen, Denmark) and urinary protein excre-

tion was assayed by the turbidimetric method with sulfosalicylic

acid. Albuminuria and low weight proteinuria were assessed by

High Performance Liquid Cromatography according to Turpei-

nen [43].

Quantification of renal histology
Coronal sections of the kidney were immersion-fixed in

paraformaldehyde solution and embedded in paraffin. Light

microscopy was performed on 4-mm sections of tissue stained with

periodic acid-Schiff’s (PAS) and Masson trichrome reagent (MT)

to assess GS and TI fibrosis. GS was assessed by semi quantitative

analysis of 20 consecutive glomeruli (4006) according to El Nahas

et al [44]. GS was defined as glomeruli with sclerosis or mesangial

expansion and/or focal hyalinosis with tuft adherence. Glomer-

ulosclerosis was graded from 0 to 4 by a semi quantitative score:

grade *0 normal, *1 mesangial expansion/sclerosis involving less

than 25% of the glomerular tuft, *2 moderate GS (25%–50%), *3

severe GS (50%–75%), and grade *4 diffuse GS (more than 75%).

TI damage was evaluated using a semi quantitative analysis of

20 cortical fields (2006) according to Veniant el al [45]. Lesions

were graded from 0 to 4 according to the area with tubulointer-

stitial changes (tubular atrophy, casts, interstitial inflammation,

and fibrosis).

The score index in each rat was expressed as a mean value of all

scores obtained.

All the histological analysis were performed by an observer

unaware of the treatment received by each group.

Morphometric studies
Morphometric studies were performed in sections 5 mm thick

and Sirius Red stained. In brief, images were captured at 20-fold

magnification using a green optical filter (IF 550) and a high-

resolution videocamera (SONY CCD-iris) connected to a light

microscope (Nikon, Eclipse 50i). The evaluation and image

analysis procedures were performed with specific software

[46].(Fibrosis HR. Master Diagnostica. Granada. Spain) as

previously reported [47,48]. As Sirius Red stains collagen fibers,

the program automatically transforms color images in 256 grey

levels images and quantifies the elements of the image, previously

isolated from the background. In the case of glomerular images, it

is necessary to split the corpuscular area by indicating in the

monitor where the glomerulus is located. Then the program

automatically discriminates the area of renal corpuscles which is

usually surrounded by a pericapsular coat of fibers that are stained

by Sirius Red.

A total of 25 glomerular images and 10 interstitial images

random fields of renal slides (n = 5 animals per group) were

captured and processed. The values obtained for each image were:

a) glomerular fibrotic area or percentage of Sirius red-stained area

which is contained in Bowman’s capsule, b) renal corpuscular area

and c) interstitial fibrotic area, or percentage of tubulointerstitial

area occupied by Sirius red staining (excluding glomeruli and big

arteries). These values, saved in data ASCII files conveniently

labeled, can be exported to any statistical analyses program and

calculate several parameters that can express the degree of renal

fibrosis and glomerular sclerosis in an objective and quantitative

way.

Quantification of immunohistochemistry
Sections of paraformaldehyde fixed kidney tissues were

processed by indirect immune detection technique with Biotin

streptavidin amplified detection system (BioGenex, San Ramon,

CA, USA) using three primary antibodies: (1) proliferating

nuclear cell antigen (PCNA) (Dako Glostrup, Denmark NP047)

(dilution 1:200), as a marker of cell proliferation, (2) a smooth

muscle actin as a marker of myofibroblast transformation (Dako

Glostrup, Denmark NP025) (dilution 1:100) and (3) CD68 as a

marker of macrophages (Serotec, Oxford,UK MCA341R)

(dilution 1:100). Next, samples were incubated with secondary

antibody conjugated with peroxidase, EnVisionH (DAKO,

Glostrup, Denmark) for 30 minutes and stained with DAB

(EnVisionH, DAKOH, Glostrup, Denmark). Tissues were counter

stained with hematoxilin.

Normal rabbit IgG (Santa Cruz Biotechnology, Santa Cruz,

CA, USA) was used as a negative control. Mean score per biopsy

was calculated as follows: glomerular PCNA and CD68 as the

mean number of positive cells in 20 glomeruli (cells/glomerular

cross section) (4006), CD68 and PCNA tubular/interstitial score

was obtained as the mean number of stained cells in 20 fields

(cells/fields) (2006).

For the evaluation of a-smooth muscle actin each glomerulus

and tubulointerstitial field was graded semi quantitatively

according to the extent of the staining from 0 (absent) to 4 more

than 75% in the glomerular tuft or more than 75% of

tubulointerstitial field. Mean scores of 20 glomeruli and 20 fields

were calculated. Immunohistochemistry images were acquired

(SnapCool-Pro, NikonH, Tokio, Japon) and digital analysis was

performed (ImagePro-Plus, Versión 4.05 Media Cybernetics

Bethesda, MD, USA).

Western Blot Analysis of Akt, phospho-Akt, ERK and
phospho-ERK

Tissue protein extracts were homogenized in lysis buffer

(25 mM HEPES pH7,5, 150 mM NaCl, 1% Igepal CA-630,

10 mM MgCl2, 1 mM EDTA, 10% glycerol, 10 mg/mL aproti-

nin, 10 mg/mL leupeptin, 100 mM PMSF, 25 mM NaF, 1 mM

Na3VO4) and centrifuged at 14,000 g for 30 min. Supernatant

was recovered and proteins were quantified. Western blot analysis

was performed as previously described [49]. In brief lysates

(60 mg/lane) were loaded onto SDS-polyacrylamide gels, and the

proteins were transferred to nitrocellulose membranes (Bio-Rad)

by electroblotting. Membranes blocked in TTBS (10 mM Tris

pH 7.5, 150 mM NaCl, 0.1% Tween 20 plus 2% bovine serum

albumin) were incubated overnight at 4uC, as appropriate, with:

anti-Akt1/2 (1:1000, sc-8312, Santa Cruz Biotechnology, Inc.

Santa Cruz, Temecula CA, USA), anti-phospho-Akt (Ser 473)

(1:1000, #9271, Cell Signaling Technologies, Beverly, MA), anti-
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ERK1 (1:2000, sc-94, Santa Cruz Biotechnology, Inc. Santa Cruz

CA, USA) and anti-phospho-ERK (1:1000, sc-7383, Santa Cruz

Biotechnology, Inc. Santa Cruz CA,USA). Membranes were

incubated with corresponding horseradish peroxidase-conjugated

secondary antibody (1:10,000) and were developed using a

chemiluminescent reagent (ECL detection reagent Amersham

Biosciences). Developed signals were recorded on X-ray film

(Fujifilm) for densitometric analysis (Scion Image Frederick,

Maryland USA).

Quantification of renal mTOR, Akt and TGFß1 by
quantitative Real-Time PCR (qRT-PCR)

Total RNA was obtained following the Trizol manufacturer’s

instructions (Invitrogen, Carlsbad). The RNA used for the study

had a 28 s/18 s ratio between 1.8 and 2.0. Total RNA was

reverse-transcribed as follows: 2 mg of RNA were incubated with

1 ml of 50 mM random hexamers followed by RNA denaturaliza-

tion. Then, 56reaction buffer, 0.4 ml of 100 mM dNTP mix, and

MMLV retrotranscriptase 200 u/ml (Ecogen, Langhorne, PA,

USA) were added in a final volume to 20 ml and the reaction was

incubated during 5 min at 25uC, followed by 30 min at 42uC and

5 min at 85uC to stop the reaction. qRT-PCR was performed

using 5 ml of cDNA, primers and the TaqMan probe for Akt (Rn-

00583646_m1), mTOR (Rn-00571541) and TGFb1 (Rn-

00572010_m1). It is directed to locus gene NM 021578 that

codifies for the translated protein NP_067589, precursor of total

TGFb1 (A pplied Biosystems, CA, USA), and the ABI Prism 7700

Sequence Detector. The level of target gene expression was

determined using the DCt method as described [50] normalized to

the Actin control (Applied Biosystems, Madrid, Spain). Results

were expressed as ‘many fold of the unknown sample’ relative to

the reference value (sham group). Triplicates were done in each

experiment. Results are expressed as mean 6 SEM.

Statistical analysis
All data were expressed as Mean 6 SD. One way analysis of

variance and post hoc with Student-Newman–Keuls test was used

to determine the statistical significance. Statistical significance was

defined as P value less than 0.05.
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