293 research outputs found

    Radiation reaction and quantum damped harmonic oscillator

    Full text link
    By taking a Klein-Gordon field as the environment of an harmonic oscillator and using a new method for dealing with quantum dissipative systems (minimal coupling method), the quantum dynamics and radiation reaction for a quantum damped harmonic oscillator investigated. Applying perturbation method, some transition probabilities indicating the way energy flows between oscillator, reservoir and quantum vacuum, obtainedComment: 12 pages. Accepted for publication in Mod. Phys. Lett.

    Correlation of bio- and magnetostratigraphy of Badenian sequences from western and northern Hungary

    Get PDF
    Lithological, magnetostratigraphic and paleontological (nannoplankton, foraminifers, molluscs) studies were carried out on the Badenian successions of boreholes Sopron-89, Nagylozs-1 and Sata-75 in Hungary. The correlations with the ATNTS2004 scale show that the Badenian sedimentation began during Chron C5Br thus the earliest Badenian deposits are missing in the sections. The first occurrence of Orbulina suturalis Bronnimann has been observed in Subchron C5Bn.1r, at 14.9 Ma. Although it is older than the interpolated age of 14.74 Ma in Chron C5ADr in the ATNTS2004, it is consistent with the age of 15.1 Ma obtained from recent calibration of planktonic foraminiferal bioevents. The base of the Bulimina-Bolivina Zone has been determined at 13.7 Ma in Chron C5ABr, and the Badenian/Sarmatian boundary is recorded within Chron C5AAn, at 13.15 Ma

    On the action principle for a system of differential equations

    Full text link
    We consider the problem of constructing an action functional for physical systems whose classical equations of motion cannot be directly identified with Euler-Lagrange equations for an action principle. Two ways of action principle construction are presented. From simple consideration, we derive necessary and sufficient conditions for the existence of a multiplier matrix which can endow a prescribed set of second-order differential equations with the structure of Euler-Lagrange equations. An explicit form of the action is constructed in case if such a multiplier exists. If a given set of differential equations cannot be derived from an action principle, one can reformulate such a set in an equivalent first-order form which can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. There exists an ambiguity (not reduced to a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The general procedure is illustrated by several examples.Comment: 10 page

    Electromagnetic self-forces and generalized Killing fields

    Full text link
    Building upon previous results in scalar field theory, a formalism is developed that uses generalized Killing fields to understand the behavior of extended charges interacting with their own electromagnetic fields. New notions of effective linear and angular momenta are identified, and their evolution equations are derived exactly in arbitrary (but fixed) curved spacetimes. A slightly modified form of the Detweiler-Whiting axiom that a charge's motion should only be influenced by the so-called "regular" component of its self-field is shown to follow very easily. It is exact in some interesting cases, and approximate in most others. Explicit equations describing the center-of-mass motion, spin angular momentum, and changes in mass of a small charge are also derived in a particular limit. The chosen approximations -- although standard -- incorporate dipole and spin forces that do not appear in the traditional Abraham-Lorentz-Dirac or Dewitt-Brehme equations. They have, however, been previously identified in the test body limit.Comment: 20 pages, minor typos correcte

    Covariant Equilibrium Statistical Mechanics

    Full text link
    A manifest covariant equilibrium statistical mechanics is constructed starting with a 8N dimensional extended phase space which is reduced to the 6N physical degrees of freedom using the Poincare-invariant constrained Hamiltonian dynamics describing the micro-dynamics of the system. The reduction of the extended phase space is initiated forcing the particles on energy shell and fixing their individual time coordinates with help of invariant time constraints. The Liouville equation and the equilibrium condition are formulated in respect to the scalar global evolution parameter which is introduced by the time fixation conditions. The applicability of the developed approach is shown for both, the perfect gas as well as the real gas. As a simple application the canonical partition integral of the monatomic perfect gas is calculated and compared with other approaches. Furthermore, thermodynamical quantities are derived. All considerations are shrinked on the classical Boltzmann gas composed of massive particles and hence quantum effects are discarded.Comment: 22 pages, 1 figur

    On counterexamples to the Hughes conjecture

    Get PDF
    described counterexamples for p = 5, 7 and 11. Finite groups which do not satisfy the conjecture, anti-Hughes groups, have interesting properties. We give explicit constructions of a number of anti-Hughes groups via power-commutator presentations, including relatively small examples with orders 5 46 and 7 66 . It is expected that the conjecture is false for all primes larger than 3. We show that it is false for p = 13, 17 and 19

    On the motion of a classical charged particle

    Get PDF
    We show that the Lorentz-Dirac equation is not an unavoidable consequence of energy-momentum conservation for a point charge. What follows solely from conservation laws is a less restrictive equation already obtained by Honig and Szamosi. The latter is not properly an equation of motion because, as it contains an extra scalar variable, it does not determine the future evolution of the charge. We show that a supplementary constitutive relation can be added so that the motion is determined and free from the troubles that are customary in Lorentz-Dirac equation, i. e. preacceleration and runaways

    Gauge Invariant Hamiltonian Formalism for Spherically Symmetric Gravitating Shells

    Full text link
    The dynamics of a spherically symmetric thin shell with arbitrary rest mass and surface tension interacting with a central black hole is studied. A careful investigation of all classical solutions reveals that the value of the radius of the shell and of the radial velocity as an initial datum does not determine the motion of the shell; another configuration space must, therefore, be found. A different problem is that the shell Hamiltonians used in literature are complicated functions of momenta (non-local) and they are gauge dependent. To solve these problems, the existence is proved of a gauge invariant super-Hamiltonian that is quadratic in momenta and that generates the shell equations of motion. The true Hamiltonians are shown to follow from the super-Hamiltonian by a reduction procedure including a choice of gauge and solution of constraint; one important step in the proof is a lemma stating that the true Hamiltonians are uniquely determined (up to a canonical transformation) by the equations of motion of the shell, the value of the total energy of the system, and the choice of time coordinate along the shell. As an example, the Kraus-Wilczek Hamiltonian is rederived from the super-Hamiltonian. The super-Hamiltonian coincides with that of a fictitious particle moving in a fixed two-dimensional Kruskal spacetime under the influence of two effective potentials. The pair consisting of a point of this spacetime and a unit timelike vector at the point, considered as an initial datum, determines a unique motion of the shell.Comment: Some remarks on the singularity of the vector potantial are added and some minor corrections done. Definitive version accepted in Phys. Re

    Self-forces on extended bodies in electrodynamics

    Full text link
    In this paper, we study the bulk motion of a classical extended charge in flat spacetime. A formalism developed by W. G. Dixon is used to determine how the details of such a particle's internal structure influence its equations of motion. We place essentially no restrictions (other than boundedness) on the shape of the charge, and allow for inhomogeneity, internal currents, elasticity, and spin. Even if the angular momentum remains small, many such systems are found to be affected by large self-interaction effects beyond the standard Lorentz-Dirac force. These are particularly significant if the particle's charge density fails to be much greater than its 3-current density (or vice versa) in the center-of-mass frame. Additional terms also arise in the equations of motion if the dipole moment is too large, and when the `center-of-electromagnetic mass' is far from the `center-of-bare mass' (roughly speaking). These conditions are often quite restrictive. General equations of motion were also derived under the assumption that the particle can only interact with the radiative component of its self-field. These are much simpler than the equations derived using the full retarded self-field; as are the conditions required to recover the Lorentz-Dirac equation.Comment: 30 pages; significantly improved presentation; accepted for publication in Phys. Rev.

    Heuristic Models of Two-Fermion Relativistic Systems with Field-Type Interaction

    Get PDF
    We use the chain of simple heuristic expedients to obtain perturbative and exactly solvable relativistic spectra for a family of two-fermionic bound systems with Coulomb-like interaction. In the case of electromagnetic interaction the spectrum coincides up to the second order in a coupling constant with that following from the quantum electrodynamics. Discrepancy occurs only for S-states which is the well-known difficulty in the bound-state problem. The confinement interaction is considered too. PACS number(s): 03.65.Pm, 03.65.Ge, 12.39.PnComment: 16 pages, LaTeX 2.0
    • …
    corecore