1,227 research outputs found

    S-Track Stabilization of Heterotic de Sitter Vacua

    Get PDF
    We present a new mechanism, the S-Track, to stabilize the volume modulus S in heterotic M-theory flux compactifications along with the orbifold-size T besides complex structure and vector bundle moduli stabilization. The key dynamical ingredient which makes the volume modulus stabilization possible, is M5-instantons arising from M5-branes wrapping the whole Calabi-Yau slice. These are natural in heterotic M-theory where the warping shrinks the Calabi-Yau volume along S^1/Z_2. Combined with H-flux, open M2-instantons and hidden sector gaugino condensation it leads to a superpotential W which stabilizes S similar like a racetrack but without the need for multi gaugino condensation. Moreover, W contains two competing non-perturbative effects which stabilize T. We analyze the potential and superpotentials to show that it leads to heterotic de Sitter vacua with broken supersymmetry through non-vanishing F-terms.Comment: 16 pages, 2 figures; final PRD versio

    Rotational Effects of Twisted Light on Atoms Beyond the Paraxial Approximation

    Full text link
    The transition probability for the emission of a Bessel photon by an atomic system is calculated within first order perturbation theory. We derive a closed expression for the electromagnetic potentials beyond the paraxial approximation that permits a systematic multipole approximation . The matrix elements between center of mass and internal states are evaluated for some specially relevant cases. This permits to clarify the feasibility of observing the rotational effects of twisted light on atoms predicted by the calculations. It is shown that the probability that the internal state of an atom acquires orbital angular momentum from light is, in general, maximum for an atom located at the axis of a Bessel mode. For a Gaussian packet, the relevant parameter is the ratio of the spread of the atomic center of mass wave packet to the transversal wavelength of the photon.Comment: 10 pages, no figure

    A study of Feshbach resonances and the unitary limit in a model of strongly correlated nucleons

    Full text link
    A model of strongly interacting and correlated hadrons is developed. The interaction used contains a long range attraction and short range repulsive hard core. Using this interaction and various limiting situations of it, a study of the effect of bound states and Feshbach resonances is given. The limiting situations are a pure square well interaction, a delta-shell potential and a pure hard core potential. The limit of a pure hard core potential are compared with results for a spinless Bose and Fermi gas. The limit of many partial waves for a pure hard core interaction is also considered and result in expressions involving the hard core volume. This feature arises from a scaling relation similar to that for hard sphere scattering with diffractive corrections. The role of underlying isospin symmetries associated with the strong interaction of protons and neutrons in this two component model is investigated. Properties are studied with varying proton fraction. An analytic expression for the Beth Uhlenbeck continuum integral is developed which closely approximates exact results based on the potential model considered. An analysis of features associated with a unitary limit is given. In the unitary limit of very large scattering length, the ratio of effective range to thermal wavelength appears as a limiting scale. Thermodynamic quantities such as the entropy and compressibility are also developed. The effective range corrections to the entropy vary as the cube of this ratio for low temperatures and are therefore considerably reduced compared to the corrections to the interaction energy which varies linearly with this ratio. Effective range corrections to the compressibility are also linear in the ratio.Comment: 39 pages, 15 figures, 2 table

    Non-Abelian Dipole Radiation and the Heavy Quark Expansion

    Get PDF
    Dipole radiation in QCD is derived to the second order in αs\alpha_s. A power-like evolution of the spin-singlet heavy quark operators is obtained to the same accuracy. In particular, O(αs2){\cal O}(\alpha_s^2) relation between a short-distance low-scale running heavy quark mass and the \barMS mass is given. We discuss the properties of the effective QCD coupling \aw(E) which governs the dipole radiation. This coupling is advantageous for heavy quark physics.Comment: 12 pages, Late

    Signatures of High-Intensity Compton Scattering

    Full text link
    We review known and discuss new signatures of high-intensity Compton scattering assuming a scenario where a high-power laser is brought into collision with an electron beam. At high intensities one expects to see a substantial red-shift of the usual kinematic Compton edge of the photon spectrum caused by the large, intensity dependent, effective mass of the electrons within the laser beam. Emission rates acquire their global maximum at this edge while neighbouring smaller peaks signal higher harmonics. In addition, we find that the notion of the centre-of-mass frame for a given harmonic becomes intensity dependent. Tuning the intensity then effectively amounts to changing the frame of reference, going continuously from inverse to ordinary Compton scattering with the centre-of-mass kinematics defining the transition point between the two.Comment: 25 pages, 16 .eps figure

    Model Analysis of the epepπ+πep \to ep'\pi^+\pi^- Electroproduction Reaction on the Proton

    Full text link
    Recent CLAS data on the pπ+πp\pi^+\pi^- electroproduction off protons at 1.3<<W<<1.57 GeV and 0.25<<Q2Q^{2}<<0.6 GeV2^{2} have been analyzed using a meson-baryon phenomenological model. By fitting nine 1-fold differential cross section data for each WW and Q2Q^{2} bin, the charged double pion electroproduction mechanisms are identified from their manifestations in the observables. We have extracted the cross sections from amplitudes of each of the considered isobar channels as well as from their coherent sum. We also obtained non-resonant partial wave amplitudes of all contributing isobar channels which could be useful for advancing a complete coupled-channel analysis of all meson electroproduction data.Comment: Experiment Numbers: E93-006, E94-005 Group: Hall

    A search for J^{PC}=1^{-+} exotic mesons in the pi- pi- pi+ and pi- pi0 pi0 systems

    Full text link
    A partial wave analysis (PWA) of the pi-pi-pi+ and pi-pi0pi0 systems produced in the reaction pi- p -> (3pi)-p at 18 GeV/c was carried out using an isobar model assumption. This analysis is based on 3.0M pi-pi0pi0 events and 2.6M pi-pi-pi+ events and shows production of the a2(1320), pi2(1670) and \pi(1800) mesons. An earlier analysis of 250K pi-pi-pi+ events from the same experiment showed possible evidence for a J^{PC}=1^{-+}$ exotic meson with a mass of 1.6 GeV/c^2 decaying into rho pi. In this analysis of a higher statistics sample of the (3pi)- system in two charged modes we find no evidence of an exotic meson.Comment: 4 pages, 5 figures, added comment about the negative reflectivity exotic wave

    Emergence of Oscillons in an Expanding Background

    Full text link
    We consider a (1+1) dimensional scalar field theory that supports oscillons, which are localized, oscillatory, stable solutions to nonlinear equations of motion. We study this theory in an expanding background and show that oscillons now lose energy, but at a rate that is exponentially small when the expansion rate is slow. We also show numerically that a universe that starts with (almost) thermal initial conditions will cool to a final state where a significant fraction of the energy of the universe -- on the order of 50% -- is stored in oscillons. If this phenomenon persists in realistic models, oscillons may have cosmological consequences.Comment: 13 pages, 4 .eps figures, uses RevTeX4; v2: clarified details of expansion, added reference

    Viral uncoating is directional: exit of the genomic RNA in a common cold virus starts with the poly-(A) tail at the 3′-end

    Get PDF
    Upon infection, many RNA viruses reorganize their capsid for release of the genome into the host cell cytosol for replication. Often, this process is triggered by receptor binding and/or by the acidic environment in endosomes. In the genus Enterovirus, which includes more than 150 human rhinovirus (HRV) serotypes causing the common cold, there is persuasive evidence that the viral RNA exits single-stranded through channels formed in the protein shell. We have determined the time-dependent emergence of the RNA ends from HRV2 on incubation of virions at 56°C using hybridization with specific oligonucleotides and detection by fluorescence correlation spectroscopy. We report that psoralen UV crosslinking prevents complete RNA release, allowing for identification of the sequences remaining inside the capsid. We also present the structure of uncoating intermediates in which parts of the RNA are condensed and take the form of a rod that is directed roughly towards a two-fold icosahedral axis, the presumed RNA exit point. Taken together, in contrast to schemes frequently depicted in textbooks and reviews, our findings demonstrate that exit of the RNA starts from the 3′-end. This suggests that packaging also occurs in an ordered manner resulting in the 3′-poly-(A) tail becoming located close to a position of pore formation during conversion of the virion into a subviral particle. This directional genome release may be common to many icosahedral non-enveloped single-stranded RNA viruse

    Nonlocal Electrodynamics of Rotating Systems

    Get PDF
    The nonlocal electrodynamics of uniformly rotating systems is presented and its predictions are discussed. In this case, due to paucity of experimental data, the nonlocal theory cannot be directly confronted with observation at present. The approach adopted here is therefore based on the correspondence principle: the nonrelativistic quantum physics of electrons in circular "orbits" is studied. The helicity dependence of the photoeffect from the circular states of atomic hydrogen is explored as well as the resonant absorption of a photon by an electron in a circular "orbit" about a uniform magnetic field. Qualitative agreement of the predictions of the classical nonlocal electrodynamics with quantum-mechanical results is demonstrated in the correspondence regime.Comment: 23 pages, no figures, submitted for publicatio
    corecore