49 research outputs found

    Examining oral pre-exposure prophylaxis (PrEP) literacy among participants in an HIV vaccine trial preparedness cohort study

    Get PDF
    Background: PrEP literacy is influenced by many factors including the types of information available and how it is interpreted. The level of PrEP literacy may influence acceptability and uptake. Methods: We conducted 25 in-depth interviews in a HIV vaccine trial preparedness cohort study. We explored what participants knew about PrEP, sources of PrEP knowledge and how much they know about PrEP. We used the framework approach to generate themes for analysis guided by the Social Ecological Model and examined levels of PrEP literacy using the individual and interpersonal constructs of the SEM. Results: We found that PrEP awareness is strongly influenced by external factors such as social media and how much participants know about HIV treatment and prevention in the local community. However, while participants highlighted the importance of the internet/social media as a source of information about PrEP they talked of low PrEP literacy in their communities. Participants indicated that their own knowledge came as a result of joining the HIV vaccine trial preparedness study. However, some expressed doubts about the effectiveness of the drug and worried about side effects. Participants commented that at the community level PrEP was associated with being sexually active, because it was used to prevent the sexual transmission of HIV. As a result, some participants commented that one could feel judged by the health workers for asking for PrEP at health facilities in the community. Conclusion: The information collected in this study provided an understanding of the different layers of influence around individuals that are important to address to improve PrEP acceptability and uptake. Our findings can inform strategies to address the barriers to PrEP uptake, particularly at structural and community levels. Trial registration: https://clinicaltrials.gov/ct2/show/NCT04066881

    The Wor1-like Protein Fgp1 Regulates Pathogenicity, Toxin Synthesis and Reproduction in the Phytopathogenic Fungus Fusarium graminearum

    Get PDF
    WOR1 is a gene for a conserved fungal regulatory protein controlling the dimorphic switch and pathogenicity determents in Candida albicans and its ortholog in the plant pathogen Fusarium oxysporum, called SGE1, is required for pathogenicity and expression of key plant effector proteins. F. graminearum, an important pathogen of cereals, is not known to employ switching and no effector proteins from F. graminearum have been found to date that are required for infection. In this study, the potential role of the WOR1-like gene in pathogenesis was tested in this toxigenic fungus. Deletion of the WOR1 ortholog (called FGP1) in F. graminearum results in greatly reduced pathogenicity and loss of trichothecene toxin accumulation in infected wheat plants and in vitro. The loss of toxin accumulation alone may be sufficient to explain the loss of pathogenicity to wheat. Under toxin-inducing conditions, expression of genes for trichothecene biosynthesis and many other genes are not detected or detected at lower levels in Δfgp1 strains. FGP1 is also involved in the developmental processes of conidium formation and sexual reproduction and modulates a morphological change that accompanies mycotoxin production in vitro. The Wor1-like proteins in Fusarium species have highly conserved N-terminal regions and remarkably divergent C-termini. Interchanging the N- and C- terminal portions of proteins from F. oxysporum and F. graminearum resulted in partial to complete loss of function. Wor1-like proteins are conserved but have evolved to regulate pathogenicity in a range of fungi, likely by adaptations to the C-terminal portion of the protein

    Examining oral pre-exposure prophylaxis (PrEP) literacy among participants in an HIV vaccine trial preparedness cohort study

    Get PDF
    Background PrEP literacy is influenced by many factors including the types of information available and how it is interpreted. The level of PrEP literacy may influence acceptability and uptake. Methods We conducted 25 in-depth interviews in a HIV vaccine trial preparedness cohort study. We explored what participants knew about PrEP, sources of PrEP knowledge and how much they know about PrEP. We used the framework approach to generate themes for analysis guided by the Social Ecological Model and examined levels of PrEP literacy using the individual and interpersonal constructs of the SEM. Results We found that PrEP awareness is strongly influenced by external factors such as social media and how much participants know about HIV treatment and prevention in the local community. However, while participants highlighted the importance of the internet/social media as a source of information about PrEP they talked of low PrEP literacy in their communities. Participants indicated that their own knowledge came as a result of joining the HIV vaccine trial preparedness study. However, some expressed doubts about the effectiveness of the drug and worried about side effects. Participants commented that at the community level PrEP was associated with being sexually active, because it was used to prevent the sexual transmission of HIV. As a result, some participants commented that one could feel judged by the health workers for asking for PrEP at health facilities in the community. Conclusion The information collected in this study provided an understanding of the different layers of influence around individuals that are important to address to improve PrEP acceptability and uptake. Our findings can inform strategies to address the barriers to PrEP uptake, particularly at structural and community levels. Trial registration https://clinicaltrials.gov/ct2/show/NCT0406688

    The Dominant and Poorly Penetrant Phenotypes of Maize Unstable factor for orange1 Are Caused by DNA Methylation Changes at a Linked Transposon

    No full text
    The maize (Zea mays) mutant Unstable factor for orange1 (Ufo1) has been implicated in the epigenetic modifications of pericarp color1 (p1), which regulates the production of the flavonoid pigments phlobaphenes. Here, we show that the ufo1 gene maps to a genetically recalcitrant region near the centromere of chromosome 10. Transcriptome analysis of Ufo1-1 mutant and wild-type plants identified a candidate gene in the mapping region using a comparative sequence-based approach. The candidate gene, GRMZM2G053177, is overexpressed by >45-fold in multiple tissues of Ufo1-1, explaining the dominance of Ufo1-1 and its phenotypes. In the mutant stock, GRMZM2G053177 has a unique transcript originating within a CACTA transposon inserted in its first intron, and it is missing the first four codons of the wild-type transcript. GRMZM2G053177 expression is regulated by the DNA methylation status of the CACTA transposon, explaining the incomplete penetrance and poor expressivity of Ufo1-1 Transgenic overexpression lines of GRMZM2G053177 (Ufo1-1) phenocopy the p1-induced pigmentation in coleoptiles, tassels, leaf sheaths, husks, pericarps, and cob glumes. Transcriptome analysis of Ufo1 versus wild-type tissues revealed changes in several pathways related to abiotic and biotic stress. Thus, this study addresses the enigma of Ufo1 identity in maize, which had gone unsolved for more than 50 years

    Diversity-oriented combinatorial biosynthesis of benzenediol lactone scaffolds by subunit shuffling of fungal polyketide synthases

    No full text
    Combinatorial biosynthesis aspires to exploit the promiscuity of microbial anabolic pathways to engineer the synthesis of new chemical entities. Fungal benzenediol lactone (BDL) polyketides are important pharmacophores with wide-ranging bioactivities, including heat shock response and immune system modulatory effects. Their biosynthesis on a pair of sequentially acting iterative polyketide synthases (iPKSs) offers a test case for the modularization of secondary metabolic pathways into “build–couple–pair” combinatorial synthetic schemes. Expression of random pairs of iPKS subunits from four BDL model systems in a yeast heterologous host created a diverse library of BDL congeners, including a polyketide with an unnatural skeleton and heat shock response-inducing activity. Pairwise heterocombinations of the iPKS subunits also helped to illuminate the innate, idiosyncratic programming of these enzymes. Even in combinatorial contexts, these biosynthetic programs remained largely unchanged, so that the iPKSs built their cognate biosynthons, coupled these building blocks into chimeric polyketide intermediates, and catalyzed intramolecular pairing to release macrocycles or α-pyrones. However, some heterocombinations also provoked stuttering, i.e., the relaxation of iPKSs chain length control to assemble larger homologous products. The success of such a plug and play approach to biosynthesize novel chemical diversity bodes well for bioprospecting unnatural polyketides for drug discovery

    Thioesterase Domains of Fungal Nonreducing Polyketide Synthases Act as Decision Gates during Combinatorial Biosynthesis

    No full text
    A crucial step during the programmed biosynthesis of fungal polyketide natural products is the release of the final polyketide intermediate from the iterative polyketide synthases (iPKSs), most frequently by a thioesterase (TE) domain. Realization of combinatorial biosynthesis with iPKSs requires TE domains that can accept altered polyketide intermediates generated by hybrid synthase enzymes and successfully release “unnatural products” with the desired structure. Achieving precise control over product release is of paramount importance with O—C bond-forming TE domains capable of macrocyclization, hydrolysis, transesterification and pyrone formation that channel reactive, pluripotent polyketide intermediates to defined structural classes of bioactive secondary metabolites. By exploiting chimeric iPKS enzymes to offer substrates with controlled structural variety to two orthologous O—C bond-forming TE domains in situ, we show that these enzymes act as non-equivalent decision gates, determining context-dependent release mechanisms and overall product flux. Inappropriate choice of a TE could eradicate product formation in an otherwise highly productive chassis. Conversely, a judicious choice of a TE may allow the production of a desired hybrid metabolite. Finally, a serendipitous choice of a TE may reveal the unexpected productivity of some chassis. The ultimate decision gating role of TE domains influences the observable outcome of combinatorial domain swaps, emphasizing that the deduced programming rules are context dependent. These factors may complicate engineering the biosynthesis of a desired “unnatural product”, but may also open additional avenues to create biosynthetic novelty based on fungal nonreduced polyketides
    corecore