85 research outputs found

    Dynamical chaos in the problem of magnetic jet collimation

    Full text link
    We investigate dynamics of a jet collimated by magneto-torsional oscillations. The problem is reduced to an ordinary differential equation containing a singularity and depending on a parameter. We find a parameter range for which this system has stable periodic solutions and study bifurcations of these solutions. We use Poincar\'e sections to demonstrate existence of domains of regular and chaotic motions. We investigate transition from periodic to chaotic solutions through a sequence of period doublings.Comment: 11 pages, 29 figures, 1 table, MNRAS (published online

    Methods of improvement of forecasting of development of mineral deposits' power supply

    Get PDF
    Mineral deposits (among which non-ferrous metals take a leading place) are situated on the territory of our planet rather unevenly, and often in out-of-the-way places. Nuclear power (particularly, transportable nuclear power plants) provides the new possibilities of power supply, which is very important for deposits' development. This article shares the economic aspects of forecasting in the field of power development (in particular, nuclear power on the basis of transportable nuclear power plants). Economic barriers of development of innovative nuclear technologies are considered on the example of transportable nuclear power plants. At the same time, there are given the ways of elimination of such barrier to development of this technology as methodical absence of investigation of a question of distribution of added cost between producers of innovative equipment and final product. Addition of new analytical tool (“business diagonal”) is offered for a method of definition of economically efficient distribution of added cost (received as a result of introduction of innovative technologies) between participants of production and consumption of atomic energy within the “economic cross” model. There is offered the order of use of method of cash flows discounting at calculations between nuclear market participants. Economic methods, offered in this article, may be used in forecasting of development of other energy technologies and introduction of prospective energy equipment

    A Tale of Two Current Sheets

    Full text link
    I outline a new model of particle acceleration in the current sheet separating the closed from the open field lines in the force-free model of pulsar magnetospheres, based on reconnection at the light cylinder and "auroral" acceleration occurring in the return current channel that connects the light cylinder to the neutron star surface. I discuss recent studies of Pulsar Wind Nebulae, which find that pair outflow rates in excess of those predicted by existing theories of pair creation occur, and use those results to point out that dissipation of the magnetic field in a pulsar's wind upstream of the termination shock is restored to life as a viable model for the solution of the "σ\sigma" problem as a consequence of the lower wind 4-velocity implied by the larger mass loading.Comment: 17 pages, 6 figures, Invited Review, Proceedings of the "ICREA Workshop on The High-Energy Emission from Pulsars and their Systems", Sant Cugat, Spain, April 12-16, 201

    Electric current circuits in astrophysics

    Get PDF
    Cosmic magnetic structures have in common that they are anchored in a dynamo, that an external driver converts kinetic energy into internal magnetic energy, that this magnetic energy is transported as Poynting fl ux across the magnetically dominated structure, and that the magnetic energy is released in the form of particle acceleration, heating, bulk motion, MHD waves, and radiation. The investigation of the electric current system is particularly illuminating as to the course of events and the physics involved. We demonstrate this for the radio pulsar wind, the solar flare, and terrestrial magnetic storms

    The theory of pulsar winds and nebulae

    Full text link
    We review current theoretical ideas on pulsar winds and their surrounding nebulae. Relativistic MHD models of the wind of the aligned rotator, and of the striped wind, together with models of magnetic dissipation are discussed. It is shown that the observational signature of this dissipation is likely to be point-like, rather than extended, and that pulsed emission may be produced. The possible pulse shapes and polarisation properties are described. Particle acceleration at the termination shock of the wind is discussed, and it is argued that two distinct mechanisms must be operating, with the first-order Fermi mechanism producing the high-energy electrons (above 1 TeV) and either magnetic annihilation or resonant absorption of ion cyclotron waves responsible for the 100 MeV to 1 TeV electrons. Finally, MHD models of the morphology of the nebula are discussed and compared with observation.Comment: 33 pages, to appear in Springer Lecture Notes on "Neutron stars and pulsars, 40 years after the discovery", ed W.Becke

    New Phase-coherent Measurements of Pulsar Braking Indices

    Get PDF
    Pulsar braking indices offer insight into the physics that underlies pulsar spin-down. Only five braking indices have been measured via phase-coherent timing; all measured values are less than 3, the value expected from magnetic dipole radiation. Here we present new measurements for three of the five pulsar braking indices, obtained with phase-coherent timing for PSRs J1846-0258 (n=2.65+/-0.01), B1509-58 (n=2.839+/-0.001) and B0540-69 (n=2.140+/-0.009). We discuss the implications of these results and possible physical explanations for them.Comment: 7 pages, 5 figures. To be published in the proceedings of the conference "Isolated Neutron Stars: from the Interior to the Surface" (April 24-28, 2006, London, UK), eds. D. Page, R. Turolla, & S. Zan

    Upgrade of Biomass-Derived Levulinic Acid via Ru/C-Catalyzed Hydrogenation to γ‑Valerolactone in Aqueous−Organic−Ionic Liquids Multiphase Systems

    Get PDF
    A liquid triphase system made by an aqueous phase, an organic phase, and an ionic liquid was designed and applied to the catalytic hydrogenation/dehydration of biomass-derived levulinic acid to γ-valerolactone. This paper demonstrates that, by operating at 100−150 °C and 35 atm of H2, both in the presence of Ru/C or of a homogeneous Ru precursor, the use of the triphase system designed to match the investigated reaction allows the following: (1) to obtain up to quantitative conversions and 100% selectivity toward the desired product; (2) to recover the product by simple phase separation; and (3) to preserve the catalyst activity for in situ recycles without loss of metal. Globally the investigated reaction proves the concept that a cradle-to-grave approach to the design of a catalytic reaction system can improve the global sustainability of a chemical transformation by improving efficiency, product isolation, and catalyst recycle

    Modelling Jets, Tori and Flares in Pulsar Wind Nebulae

    Get PDF
    In this contribution we review the recent progress in the modelling of Pulsar Wind Nebulae (PWN). We start with a brief overview of the relevant physical processes in the magnetosphere, the wind-zone and the inflated nebula bubble. Radiative signatures and particle transport processes obtained from 3D simulations of PWN are discussed in the context of optical and X-ray observations. We then proceed to consider particle acceleration in PWN and elaborate on what can be learned about the particle acceleration from the dynamical structures called GwispsG observed in the Crab nebula. We also discuss recent observational and theoretical results of gamma-ray flares and the inner knot of the Crab nebula, which had been proposed as the emission site of the flares. We extend the discussion to GeV flares from binary systems in which the pulsar wind interacts with the stellar wind from a companion star. The chapter concludes with a discussion of solved and unsolved problems posed by PWN
    corecore