304 research outputs found

    Coulomb tunneling for fusion reactions in dense matter: Path integral Monte Carlo versus mean field

    Full text link
    We compare Path Integral Monte Carlo calculations by Militzer and Pollock (Phys. Rev. B 71, 134303, 2005) of Coulomb tunneling in nuclear reactions in dense matter to semiclassical calculations assuming WKB Coulomb barrier penetration through the radial mean-field potential. We find a very good agreement of two approaches at temperatures higher than ~1/5 of the ion plasma temperature. We obtain a simple parameterization of the mean field potential and of the respective reaction rates. We analyze Gamow-peak energies of reacting ions in various reaction regimes and discuss theoretical uncertainties of nuclear reaction rates taking carbon burning in dense stellar matter as an example.Comment: 13 pages, 7 figures, to appear in Phys. Rev.

    SU(2) Skyrme Vortices

    Get PDF
    A regular method for constructing vortex-like solutions with cylindrical symmetry to the equations of the SU(2) Skyrme chiral model is proposed. A numerical estimate for the length density of mass is given

    Large collection of astrophysical S-factors and its compact representation

    Full text link
    Numerous nuclear reactions in the crust of accreting neutron stars are strongly affected by dense plasma environment. Simulations of superbursts, deep crustal heating and other nuclear burning phenomena in neutron stars require astrophysical S-factors for these reactions (as a function of center-of-mass energy E of colliding nuclei). A large database of S-factors is created for about 5000 non-resonant fusion reactions involving stable and unstable isotopes of Be, B, C, N, O, F, Ne, Na, Mg, and Si. It extends the previous database of about 1000 reactions involving isotopes of C, O, Ne, and Mg. The calculations are performed using the Sao Paulo potential and the barrier penetration formalism. All calculated S-data are parameterized by an analytic model for S(E) proposed before [Phys. Rev. C 82, 044609 (2010)] and further elaborated here. For a given reaction, the present S(E)-model contains three parameters. These parameters are easily interpolated along reactions involving isotopes of the same elements with only seven input parameters, giving an ultracompact, accurate, simple, and uniform database. The S(E) approximation can also be used to estimate theoretical uncertainties of S(E) and nuclear reaction rates in dense matter, as illustrated for the case of the 34Ne+34Ne reaction in the inner crust of an accreting neutron star.Comment: 13 pages, 2 figures, Phys. Rev. C, accepte

    A preliminary factor analytic investigation into the first-order factor structure of the Fifteen Factor Plus (15FQ+) on a sample of Black South African managers

    Get PDF
    The original publication is available at http://www.sajip.co.zaMoyo, S. & Theron, C. 2011. A preliminary factor analytic investigation into the first-order factor structure of the Fifteen Factor Plus (15FQ+) on a sample of Black South African managers. SA Journal of Industrial Psychology, 37(1), 1-22, doi: 10.4102/sajip.v37i1.934.Orientation: The Fifteen Factor Questionnaire Plus (15FQ+) is a prominent personality questionnaire that organisations frequently use in personnel selection in South Africa. Research purpose: The primary objective of this study was to undertake a factor analytic investigation of the first-order factor structure of the 15FQ+. Motivation for the study: The construct validity of the 15FQ+, as a measure of personality, is necessary even though it is insufficient to justify its use in personnel selection. Research design, approach and method: The researchers evaluated the fit of the measurement model, which the structure and scoring key of the 15FQ+ implies, in a quantitative study that used an ex post facto correlation design through structural equation modelling. They conducted a secondary data analysis. They selected a sample of 241 Black South African managers from a large 15FQ+ database. Main findings: The researchers found good measurement model fit. The measurement model parameter estimates were worrying. The magnitude of the estimated model parameters suggests that the items generally do not reflect the latent personality dimensions the designers intended them to with a great degree of precision. The items are reasonably noisy measures of the latent variables they represent. Practical/managerial implications: Organisations should use the 15FQ+ carefully on Black South African managers until further local research evidence becomes available. Contribution/value-add: The study is a catalyst to trigger the necessary additional research we need to establish convincingly the psychometric credentials of the 15FQ+ as a valuable assessment tool in South Africa.Publisher's versio

    GAMMA-RAY SPECTROMETRY OF HOT PLASMAS

    Get PDF
    Gamma-ray spectrometry provides diagnostics of fast ion behavior in plasmas of large tokamaks. Information acquiring with the gamma-ray diagnostics gives possibility to identify and distinguish simultaneously presence of fast alpha-particles and other ions He), to obtain its relative densities and also to perform tomographic radial profile reconstruction of the gammaemission sources

    Neutron rich matter, neutron stars, and their crusts

    Full text link
    Neutron rich matter is at the heart of many fundamental questions in Nuclear Physics and Astrophysics. What are the high density phases of QCD? Where did the chemical elements come from? What is the structure of many compact and energetic objects in the heavens, and what determines their electromagnetic, neutrino, and gravitational-wave radiations? Moreover, neutron rich matter is being studied with an extraordinary variety of new tools such as Facility for Rare Isotope Beams (FRIB) and the Laser Interferometer Gravitational Wave Observatory (LIGO). We describe the Lead Radius Experiment (PREX) that is using parity violation to measure the neutron radius in 208Pb. This has important implications for neutron stars and their crusts. Using large scale molecular dynamics, we model the formation of solids in both white dwarfs and neutron stars. We find neutron star crust to be the strongest material known, some 10 billion times stronger than steel. It can support mountains on rotating neutron stars large enough to generate detectable gravitational waves. Finally, we describe a new equation of state for supernova and neutron star merger simulations based on the Virial expansion at low densities, and large scale relativistic mean field calculations.Comment: 10 pages, 2 figures, Plenary talk International Nuclear Physics Conference 2010, Vancouver, C

    Exact Self-consistent Particle-like Solutions to the Equations of Nonlinear Scalar Electrodynamics in General Relativity

    Get PDF
    Exact self-consistent particle-like solutions with spherical and/or cylindrical symmetry to the equations governing the interacting system of scalar, electromagnetic and gravitational fields have been obtained. As a particular case it is shown that the equations of motion admit a special kind of solutions with sharp boundary known as droplets. For these solutions, the physical fields vanish and the space-time is flat outside of the critical sphere or cylinder. Therefore, the mass and the electric charge of these configurations are zero.Comment: 17 pages, Submitted to the International Journal of Theoretical Physic
    corecore