240 research outputs found

    Trace amine receptor (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Trace amine-associated receptors were discovered from a search for novel 5-HT receptors [9], where 15 mammalian orthologues were identified and divided into two families. The TA1 receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee for the Trace amine receptor [53]) has affinity for the endogenous trace amines tyramine, β-phenylethylamine and octopamine in addition to the classical amine dopamine [9]. Emerging evidence suggests that TA1 is a modulator of monoaminergic activity in the brain [90] with TA1 and dopamine D2 receptors shown to form constitutive heterodimers when co-expressed [28]. In addition to trace amines, receptors can be activated by amphetamine-like psychostimulants, and endogenous thyronamines

    Trace amine receptor in GtoPdb v.2023.1

    Get PDF
    Trace amine-associated receptors were discovered from a search for novel 5-HT receptors [9], where 15 mammalian orthologues were identified and divided into two families. The TA1 receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee for the Trace amine receptor [58]) has affinity for the endogenous trace amines tyramine, β-phenylethylamine and octopamine in addition to the classical amine dopamine [9]. Emerging evidence suggests that TA1 is a modulator of monoaminergic activity in the brain [94] with TA1 and dopamine D2 receptors shown to form constitutive heterodimers when co-expressed [30]. In addition to trace amines, receptors can be activated by amphetamine-like psychostimulants, and endogenous thyronamines

    QRFP receptor in GtoPdb v.2023.1

    Get PDF
    The human gene encoding the QRFP receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on the QRFP receptor [19]; QRFPR, formerly known as the Peptide P518 receptor), previously designated as an orphan GPCR receptor was identified in 2001 by Lee et al. from a hypothalamus cDNA library [17]. However, the reported cDNA (AF411117) is a chimera with bases 1-127 derived from chromosome 1 and bases 155-1368 derived from chromosome 4. When corrected, QRFPR (also referred to as SP9155 or AQ27) encodes a 431 amino acid protein that shares sequence similarities in the transmembrane spanning regions with other peptide receptors. These include neuropeptide FF2 (38%), neuropeptide Y2 (37%) and galanin Gal1 (35%) receptors. QRFP receptor was identified as a Gs-coupled GPCR [6, 14] that's activated by the endogenous peptides QRFP43 (43RFa) and QRFP26 (26RFa) [6, 14, 11]. However, Gq- and Gi/o-mediated signaling was also reported [11, 25]. Two naturally occurring mutations in the human QRFP receptor lead to distinct and opposite 26RFa-evoked signaling bias [20]

    QRFP receptor (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The human gene encoding the QRFP receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on the QRFP receptor [16]; QRFPR, formerly known as the Peptide P518 receptor), previously designated as an orphan GPCR receptor was identified in 2001 by Lee et al. from a hypothalamus cDNA library [15]. However, the reported cDNA (AF411117) is a chimera with bases 1-127 derived from chromosome 1 and bases 155-1368 derived from chromosome 4. When corrected, QRFPR (also referred to as SP9155 or AQ27) encodes a 431 amino acid protein that shares sequence similarities in the transmembrane spanning regions with other peptide receptors. These include neuropeptide FF2 (38%), neuropeptide Y2 (37%) and galanin Gal1 (35%) receptors

    Modelling, Design And Diagnostics For A Photoionised Plasma Experiment

    Get PDF
    Photoionised plasmas are common in astrophysical environments and new high resolution spectra from such sources have been recorded in recent years by the Chandra and XMM-Newton satellites. These provide a wealth of spectroscopic information and have motivated recent efforts aimed at obtaining a detailed understanding of the atomic-kinetic and radiative characteristics of photoionised plasmas. The Z-pinch facility at the Sandia National Laboratories is the most powerful terrestrial source of X-rays and provides an opportunity to produce photoionised plasmas in a well characterised radiation environment. We present modelling work and experimental design considerations for a forthcoming experiment at Sandia in which X-rays from a collapsing Z-pinch will be used to photoionise low density neon contained in a gas cell. View factor calculations were used to evaluate the radiation environment at the gas cell; the hydrodynamic characteristics of the gas cell were examined using the Helios-CR code, in particular looking at the heating, temperature and ionisation of the neon and the absorption of radiation. Emission and absorption spectra were also computed, giving estimates of spectra likely to be observed experimentally

    X-ray Astronomy in the Laboratory with a Miniature Compact Object Produced by Laser-Driven Implosion

    Full text link
    Laboratory spectroscopy of non-thermal equilibrium plasmas photoionized by intense radiation is a key to understanding compact objects, such as black holes, based on astronomical observations. This paper describes an experiment to study photoionizing plasmas in laboratory under well-defined and genuine conditions. Photoionized plasma is here generated using a 0.5-keV Planckian x-ray source created by means of a laser-driven implosion. The measured x-ray spectrum from the photoionized silicon plasma resembles those observed from the binary stars Cygnus X-3 and Vela X-1 with the Chandra x-ray satellite. This demonstrates that an extreme radiation field was produced in the laboratory, however, the theoretical interpretation of the laboratory spectrum significantly contradicts the generally accepted explanations in x-ray astronomy. This model experiment offers a novel test bed for validation and verification of computational codes used in x-ray astronomy.Comment: 5 pages, 4 figures are included. This is the original submitted version of the manuscript to be published in Nature Physic

    Molecular evidence of Ebola Reston virus infection in Philippine bats

    Get PDF
    Background: In 2008-09, evidence of Reston ebolavirus (RESTV) infection was found in domestic pigs and pig workers in the Philippines. With species of bats having been shown to be the cryptic reservoir of filoviruses elsewhere, the Philippine government, in conjunction with the Food and Agriculture Organization of the United Nations, assembled a multi-disciplinary and multi-institutional team to investigate Philippine bats as the possible reservoir of RESTV. Methods: The team undertook surveillance of bat populations at multiple locations during 2010 using both serology and molecular assays. Results: A total of 464 bats from 21 species were sampled. We found both molecular and serologic evidence of RESTV infection in multiple bat species. RNA was detected with quantitative PCR (qPCR) in oropharyngeal swabs taken from Miniopterus schreibersii, with three samples yielding a product on conventional hemi-nested PCR whose sequences differed from a Philippine pig isolate by a single nucleotide. Uncorroborated qPCR detections may indicate RESTV nucleic acid in several additional bat species (M. australis, C. brachyotis and Ch. plicata). We also detected anti-RESTV antibodies in three bats (Acerodon jubatus) using both Western blot and ELISA. Conclusions: The findings suggest that ebolavirus infection is taxonomically widespread in Philippine bats, but the evident low prevalence and low viral load warrants expanded surveillance to elaborate the findings, and more broadly, to determine the taxonomic and geographic occurrence of ebolaviruses in bats in the region. © 2015 Jayme et al

    TRH: Pathophysiologic and clinical implications

    Get PDF
    Thyrotropin releasing hormone is thought to be a tonic stimulator of the pituitary TSH secretion regulating the setpoint of the thyrotrophs to the suppressive effect of thyroid hormones. The peptide stimulates the release of normal and elevated prolactin. ACTH and GH may increase in response to exogenous TRH in pituitary ACTH and GH hypersecretion syndromes and in some extrapituitary diseases. The pathophysiological implications of extrahypothalamic TRH in humans are essentially unknown. The TSH response to TRH is nowadays widely used as a diganostic amplifier in thyroid diseases being suppressed in borderline and overt hyperthyroid states and increased in primary thyroid failure. In hypothyroid states of hypothalamic origin, TSH increases in response to exogenous TRH often with a delayed and/or exaggerated time course. But in patients with pituitary tumors and suprasellar extension TSH may also respond to TRH despite secondary hypothyroidism. This TSH increase may indicate a suprasellar cause for the secondary hypothyroidism, probably due to portal vessel occlusion. The TSH released in these cases is shown to be biologically inactive
    • …
    corecore