5 research outputs found

    Measurement of the 244^{244}Cm and 246^{246}Cm Neutron-Induced Cross Sections at the n_TOF Facility

    Get PDF
    The neutron capture reactions of the 244^{244}Cm and 246^{246}Cm isotopes open the path for the formation of heavier Cm isotopes and of heavier elements such as Bk and Cf in a nuclear reactor. In addition, both isotopes belong to the minor actinides with a large contribution to the decay heat and to the neutron emission in irradiated fuels proposed for the transmutation of nuclear waste and fast critical reactors. The available experimental data for both isotopes are very scarce. We measured the neutron capture cross section with isotopically enriched samples of 244^{244}Cm and 246^{246}Cm provided by JAEA. The measurement covers the range from 1 eV to 250 eV in the n_TOF Experimental Area 2 (EAR-2). In addition, a normalization measurement with the 244^{244}Cm sample was performed at Experimental Area 1 (EAR-1) with the Total Absorption Calorimeter (TAC)

    Measurement of the 244^{244} Cm and 246^{246} Cm Neutron-Induced Cross Sections at the n_TOF Facility

    No full text
    International audienceThe neutron capture reactions of the244^{244} Cm and246^{246} Cm isotopes open the path for the formation of heavier Cm isotopes and of heavier elements such as Bk and Cf in a nuclear reactor. In addition, both isotopes belong to the minor actinides with a large contribution to the decay heat and to the neutron emission in irradiated fuels proposed for the transmutation of nuclear waste and fast critical reactors. The available experimental data for both isotopes are very scarce. We measured the neutron capture cross section with isotopically enriched samples of244^{244} Cm and246^{246} Cm provided by JAEA. The measurement covers the range from 1 eV to 250 eV in the n_TOF Experimental Area 2 (EAR-2). In addition, a normalization measurement with the244^{244} Cm sample was performed at Experimental Area 1 (EAR-1) with the Total Absorption Calorimeter (TAC)

    Characterization and First Test of an i-TED Prototype at CERN n_TOF

    No full text
    International audienceNeutron capture cross section measurements are of fundamental importance for the study of the slow process of neutron capture, so called s-process. This mechanism is responsible for the formation of most elements heavier than iron in the Universe. To this aim, installations and detectors have been developed, as total energy radiation C6_{6} D6_{6} detectors. However, these detectors can not distinguish between true capture gamma rays from the sample under study and neutron induced gamma rays produced in the surroundings of the setup. To improve this situation, we propose (Domingo Pardo in Nucl Instr Meth Phys Res A 825:78–86, 2016, [1]) the use of the Compton principle to select events produced in the sample and discard background events. This involves using detectors capable of resolving the interaction position of the gamma ray inside the detector itself, as well as a high energy resolution. These are the main features of i-TED, a total energy detector capable of gamma ray imaging. Such system is being developed at the “Gamma Spectroscopy and Neutrons Group” at IFIC ( http://webgamma.ific.uv.es/gamma/es/ , [2]), in the framework of the ERC-funded project HYMNS (High sensitivitY and Measurements of key stellar Nucleo-Synthesis reactions). This work summarizes first tests with neutron beam at CERN n _\_ TOF

    Characterization and First Test of an i-TED Prototype at CERN n_TOF

    No full text
    Neutron capture cross section measurements are of fundamental importance for the study of the slow process of neutron capture, so called s-process. This mechanism is responsible for the formation of most elements heavier than iron in the Universe. To this aim, installations and detectors have been developed, as total energy radiation C6_{6} D6_{6} detectors. However, these detectors can not distinguish between true capture gamma rays from the sample under study and neutron induced gamma rays produced in the surroundings of the setup. To improve this situation, we propose (Domingo Pardo in Nucl Instr Meth Phys Res A 825:78–86, 2016, [1]) the use of the Compton principle to select events produced in the sample and discard background events. This involves using detectors capable of resolving the interaction position of the gamma ray inside the detector itself, as well as a high energy resolution. These are the main features of i-TED, a total energy detector capable of gamma ray imaging. Such system is being developed at the “Gamma Spectroscopy and Neutrons Group” at IFIC ( http://webgamma.ific.uv.es/gamma/es/ , [2]), in the framework of the ERC-funded project HYMNS (High sensitivitY and Measurements of key stellar Nucleo-Synthesis reactions). This work summarizes first tests with neutron beam at CERN n _\_ TOF

    Characterization and first test of an i-TED prototype at CERN n_TOF

    No full text
    Neutron capture cross section measurements are of fundamental importance for the study of the slow process of neutron capture, so called s-process. This mechanism is responsible for the formation of most elements heavier than iron in the Universe. To this aim, installations and detectors have been developed, as total energy radiation C 6 D 6 detectors. However, these detectors can not distinguish between true capture gamma rays from the sample under study and neutron induced gamma rays produced in the surroundings of the setup. To improve this situation, we propose (Domingo Pardo in Nucl Instr Meth Phys Res A 825:78–86, 2016, [1]) the use of the Compton principle to select events produced in the sample and discard background events. This involves using detectors capable of resolving the interaction position of the gamma ray inside the detector itself, as well as a high energy resolution. These are the main features of i-TED, a total energy detector capable of gamma ray imaging. Such system is being developed at the “Gamma Spectroscopy and Neutrons Group” at IFIC (http://webgamma.ific.uv.es/gamma/es/, [2]), in the framework of the ERC-funded project HYMNS (High sensitivitY and Measurements of key stellar Nucleo-Synthesis reactions). This work summarizes first tests with neutron beam at CERN n _ TOF
    corecore