2,767 research outputs found
Omega and eta meson production in p+p reactions at E_{kin} = 3.5 GeV
We report on the exclusive production of omega and eta mesons in p+p
reactions at 3.5 GeV beam kinetic energy. Production cross sections, angular
distributions and Dalitz plots of both mesons were determined. Moreover, the
relative contribution of the N(1535) resonance in eta production at this energy
was evaluated. We conclude that eta mesons produced via N(1535) exihibit an
isotropic angular distribution, whereas those produced directly show a strong
anisotropic distribition. omega mesons show a slightly anisotropic angular
distribition.Comment: 5 pages, 6 figures, proceedings of the 11th International Workshop on
Meson Production, Properties and Interaction, Krak\'ow, Poland, 10 - 15 June
201
The Pierre Auger Project and Enhancements
The current status of the scientific results of the Auger Observatory will be
discussed which include spectrum, anisotropy in arrival directions, chemical
composition analyses, and limits on neutrino and photon fluxes. A review of the
Observatory detection systems will be presented. Auger has started the
construction of its second phase which encompasses antennae for radio detection
of cosmic rays, high-elevation telescopes, and surface plus muon detectors.
Details will be presented on the latter, AMIGA (Auger Muons and Infill for the
Ground Array), an Auger project consisting of 85 detector pairs each one
composed of a surface water-Cherenkov detector and a buried muon counter. The
detector pairs are arranged in an array with spacings of 433 and 750 m in order
to perform a detailed study of the 10^17 eV to 10^19 eV spectrum region.
Preliminary results on the performance of the 750 m array of surface detectors
and the first muon counter prototype will be presented.Comment: 10 pages, 8 figures, VIII Latin American Symposium on Nuclear Physics
and Applications December 15-19, 2009, Santiago, Chil
Magnetism and the Weiss Exchange Field - A Theoretical Analysis Inspired by Recent Experiments
The huge spin precession frequency observed in recent experiments with
spin-polarized beams of hot electrons shot through magnetized films is
interpreted as being caused by Zeeman coupling of the electron spins to the
so-called Weiss exchange field in the film. A "Stern-Gerlach experiment" for
electrons moving through an inhomogeneous exchange field is proposed. The
microscopic origin of exchange interactions and of large mean exchange fields,
leading to different types of magnetic order, is elucidated. A microscopic
derivation of the equations of motion of the Weiss exchange field is presented.
Novel proofs of the existence of phase transitions in quantum XY-models and
antiferromagnets, based on an analysis of the statistical distribution of the
exchange field, are outlined.Comment: 36 pages, 3 figure
Design of the Pluto Event Generator
We present the design of the simulation package Pluto, aimed at the study of
hadronic interactions at SIS and FAIR energies. Its main mission is to offer a
modular framework with an object-oriented structure, thereby making additions
such as new particles, decays of resonances, new models up to modules for
entire changes easily applicable. Overall consistency is ensured by a plugin-
and distribution manager. Particular features are the support of a modular
structure for physics process descriptions, and the possibility to access the
particle stream for on-line modifications. Additional configuration and
self-made classes can be attached by the user without re-compiling the package,
which makes Pluto extremely configurable.Comment: Presented at the 17th International Conference on Computing in High
Energy and Nuclear Physic
Design of the Pluto Event Generator
We present the design of the simulation package Pluto, aimed at the study of
hadronic interactions at SIS and FAIR energies. Its main mission is to offer a
modular framework with an object-oriented structure, thereby making additions
such as new particles, decays of resonances, new models up to modules for
entire changes easily applicable. Overall consistency is ensured by a plugin-
and distribution manager. Particular features are the support of a modular
structure for physics process descriptions, and the possibility to access the
particle stream for on-line modifications. Additional configuration and
self-made classes can be attached by the user without re-compiling the package,
which makes Pluto extremely configurable.Comment: Presented at the 17th International Conference on Computing in High
Energy and Nuclear Physic
Spectral Geometry of Heterotic Compactifications
The structure of heterotic string target space compactifications is studied
using the formalism of the noncommutative geometry associated with lattice
vertex operator algebras. The spectral triples of the noncommutative spacetimes
are constructed and used to show that the intrinsic gauge field degrees of
freedom disappear in the low-energy sectors of these spacetimes. The quantum
geometry is thereby determined in much the same way as for ordinary superstring
target spaces. In this setting, non-abelian gauge theories on the classical
spacetimes arise from the K-theory of the effective target spaces.Comment: 14 pages LaTe
Design of the Pluto Event Generator
We present the design of the simulation package Pluto, aimed at the study of
hadronic interactions at SIS and FAIR energies. Its main mission is to offer a
modular framework with an object-oriented structure, thereby making additions
such as new particles, decays of resonances, new models up to modules for
entire changes easily applicable. Overall consistency is ensured by a plugin-
and distribution manager. Particular features are the support of a modular
structure for physics process descriptions, and the possibility to access the
particle stream for on-line modifications. Additional configuration and
self-made classes can be attached by the user without re-compiling the package,
which makes Pluto extremely configurable.Comment: Presented at the 17th International Conference on Computing in High
Energy and Nuclear Physic
Laminar and turbulent dynamos in chiral magnetohydrodynamics-I: Theory
The magnetohydrodynamic (MHD) description of plasmas with relativistic
particles necessarily includes an additional new field, the chiral chemical
potential associated with the axial charge (i.e., the number difference between
right- and left-handed relativistic fermions). This chiral chemical potential
gives rise to a contribution to the electric current density of the plasma
(\emph{chiral magnetic effect}). We present a self-consistent treatment of the
\emph{chiral MHD equations}, which include the back-reaction of the magnetic
field on a chiral chemical potential and its interaction with the plasma
velocity field. A number of novel phenomena are exhibited. First, we show that
the chiral magnetic effect decreases the frequency of the Alfv\'{e}n wave for
incompressible flows, increases the frequencies of the Alfv\'{e}n wave and of
the fast magnetosonic wave for compressible flows, and decreases the frequency
of the slow magnetosonic wave. Second, we show that, in addition to the
well-known laminar chiral dynamo effect, which is not related to fluid motions,
there is a dynamo caused by the joint action of velocity shear and chiral
magnetic effect. In the presence of turbulence with vanishing mean kinetic
helicity, the derived mean-field chiral MHD equations describe turbulent
large-scale dynamos caused by the chiral alpha effect, which is dominant for
large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an
interaction of the chiral magnetic effect and fluctuations of the small-scale
current produced by tangling magnetic fluctuations (which are generated by
tangling of the large-scale magnetic field by sheared velocity fluctuations).
These dynamo effects may have interesting consequences in the dynamics of the
early universe, neutron stars, and the quark--gluon plasma.Comment: 23 pages, 4 figure
Momentum average approximation for models with electron-phonon coupling dependent on the phonon momentum
We generalize the momentum average (MA) approximation to study the properties
of models with momentum-dependent electron-phonon coupling. As in the case of
the application of the original MA to the Holstein model, the results are
analytical, numerically trivial to evaluate, exact for both zero bandwidth and
for zero electron-phonon coupling, and are accurate everywhere in parameter
space. Comparison with available numerical data confirms this accuracy. We then
show that further improvements can be obtained based on variational
considerations, using the one-dimensional breathing-mode Hamiltonian as a
specific example. For example, by using this variational MA, we obtain ground
state energies within at most 0.3% error of the numerical data.Comment: 15 pages, 10 figure
Magnetic Phases of Rare Earth Hexagonal Manganites
We describe the magnetic phases of hexagonal rare earth manganites RMnO3
using Landau theory. A minimal model based on four one-dimensional magnetic
order parameters is developed.Comment: 2 Pages, Proceedings of SCES'0
- …