79 research outputs found

    Reply to Comment on "Magnetization Process of Single Molecule Magnets at Low Temperatures"

    Full text link
    This is the reply to a Comment by I.S.Tupitsyn and P.C.E. Stamp (PRL v92,119701 (2004)) on a letter of ours (J.F.Fernandez and J.J.Alonso, PRL v91, 047202 (2003)).Comment: 2 LaTeX pages, 1 eps figure. Submitted to PRL on 20 October 200

    Ground-state hyperfine structure of H-, Li-, and B-like ions in middle-Z region

    Full text link
    The hyperfine splitting of the ground state of H-, Li-, and B-like ions is investigated in details within the range of nuclear numbers Z = 7-28. The rigorous QED approach together with the large-scale configuration-interaction Dirac-Fock-Sturm method are employed for the evaluation of the interelectronic-interaction contributions of first and higher orders in 1/Z. The screened QED corrections are evaluated to all orders in (\alpha Z) utilizing an effective potential approach. The influence of nuclear magnetization distribution is taken into account within the single-particle nuclear model. The specific differences between the hyperfine-structure level shifts of H- and Li-like ions, where the uncertainties associated with the nuclear structure corrections are significantly reduced, are also calculated.Comment: 22 pages, 11 tables, 2 figure

    Transition frequency shifts with fine structure constant variation for Fe II: Breit and core-valence correlation correction

    Full text link
    Transition frequencies of Fe II ion are known to be very sensitive to variation of the fine structure constant \alpha. The resonance absorption lines of Fe II from objects at cosmological distances are used in a search for the possible variation of \alpha in cause of cosmic time. In this paper we calculated the dependence of the transition frequencies on \alpha^2 (q-factors) for Fe II ion. We found corrections to these coefficients from valence-valence and core-valence correlations and from the Breit interaction. Both the core-valence correlation and Breit corrections to the q-factors appeared to be larger than had been anticipated previously. Nevertheless our calculation confirms that the Fe II absorption lines seen in quasar spectra have large q-factors of both signs and thus the ion Fe II alone can be used in the search for the \alpha-variation at different cosmological epochs.Comment: 7 pages, submitted to Phys. Rev.

    Dual kinetic balance approach to basis set expansions for the Dirac equation

    Full text link
    A new approach to finite basis sets for the Dirac equation is developed. It solves the problem of spurious states and, as a result, improves the convergence properties of basis set calculations. The efficiency of the method is demonstrated for finite basis sets constructed from B splines by calculating the one-loop self-energy correction for a hydrogenlike ion.Comment: 14 pages, 1 tabl

    QED corrections to the parity-nonconserving 6s-7s amplitude in 133^{133}Cs

    Full text link
    The complete gauge-invariant set of the one-loop QED corrections to the parity-nonconserving 6s-7s amplitude in 133^{133}Cs is evaluated to all orders in αZ\alpha Z using a local version of the Dirac-Hartree-Fock potential. The calculations are peformed in both length and velocity gauges for the absorbed photon. The total binding QED correction is found to be -0.27(3)%, which differs from previous evaluations of this effect. The weak charge of 133^{133}Cs, derived using two most accurate values of the vector transition polarizability β\beta, is QW=72.57(46)Q_W=-72.57(46) for β=26.957(51)aB3\beta = 26.957(51) a_{\rm B}^3 and QW=73.09(54)Q_W=-73.09(54) for β=27.15(11)aB3\beta= 27.15(11)a_{\rm B}^3 . The first value deviates by 1.1σ1.1\sigma from the prediction of the Standard Model, while the second one is in perfect agreement with it.Comment: 4 pages, 1 figure, 2 table

    Coarsening of Disordered Quantum Rotors under a Bias Voltage

    Full text link
    We solve the dynamics of an ensemble of interacting rotors coupled to two leads at different chemical potential letting a current flow through the system and driving it out of equilibrium. We show that at low temperature the coarsening phase persists under the voltage drop up to a critical value of the applied potential that depends on the characteristics of the electron reservoirs. We discuss the properties of the critical surface in the temperature, voltage, strength of quantum fluctuations and coupling to the bath phase diagram. We analyze the coarsening regime finding, in particular, which features are essentially quantum mechanical and which are basically classical in nature. We demonstrate that the system evolves via the growth of a coherence length with the same time-dependence as in the classical limit, R(t)t1/2R(t) \simeq t^{1/2} -- the scalar curvature driven universality class. We obtain the scaling function of the correlation function at late epochs in the coarsening regime and we prove that it coincides with the classical one once a prefactor that encodes the dependence on all the parameters is factorized. We derive a generic formula for the current flowing through the system and we show that, for this model, it rapidly approaches a constant that we compute.Comment: 53 pages, 12 figure

    Nonlinear response of single-molecule nanomagnets: equilibrium and dynamical

    Full text link
    We present an experimental study of the {\em nonlinear} susceptibility of Mn12_{12} single-molecule magnets. We investigate both their thermal-equilibrium and dynamical nonlinear responses. The equilibrium results show the sensitivity of the nonlinear susceptibility to the magnetic anisotropy, which is nearly absent in the linear response for axes distributed at random. The nonlinear dynamic response of Mn12_{12} was recently found to be very large and displaying peaks reversed with respect to classical superparamagnets [F. Luis {\em et al.}, Phys. Rev. Lett. {\bf 92}, 107201 (2004)]. Here we corroborate the proposed explanation -- strong field dependence of the relaxation rate due to the detuning of tunnel energy levels. This is done by studying the orientational dependence of the nonlinear susceptibility, which permits to isolate the quantum detuning contribution. Besides, from the analysis of the longitudinal and transverse contributions we estimate a bound for the decoherence time due to the coupling to the phonon bath.Comment: 13 pages, 8 figures, resubmitted to Phys. Rev. B with minor change

    Backward scattering of low-energy antiprotons by highly charged and neutral uranium: Coulomb glory

    Full text link
    Collisions of antiprotons with He-, Ne-, Ni-like, bare, and neutral uranium are studied theoretically for scattering angles close to 180^{\circ} and antiproton energies with the interval 100 eV -- 10 keV. We investigate the Coulomb glory effect which is caused by a screening of the Coulomb potential of the nucleus and results in a prominent maximum of the differential cross section in the backward direction at some energies of the incident particle. We found that for larger numbers of electrons in the ion the effect becomes more pronounced and shifts to higher energies of the antiproton. On the other hand, a maximum of the differential cross section in the backward direction can also be found in the scattering of antiprotons on a bare uranium nucleus. The latter case can be regarded as a manifestation of the screening property of the vacuum-polarization potential in non-relativistic collisions of heavy particles.Comment: 14 pages, 5 figure

    Radiative and correlation effects on the parity-nonconserving transition amplitude in heavy alkaline atoms

    Full text link
    The complete gauge-invariant set of the one-loop QED corrections to the parity-nonconserving (PNC) amplitude in cesium and francium is evaluated to all orders in αZ\alpha Z using a local form of the Dirac-Fock potential. The calculations are performed in both length and velocity gauges for the absorbed photon and the total binding QED correction is found to be -0.27(3)% for Cs and -0.28(5)% for Fr. Moreover, a high-precision calculation of the electron-correlation and Breit-interaction effects on the 7s8ss-8s PNC amplitude in francium using a large-scale configuration-interaction Dirac-Fock method is performed. The obtained results are employed to improve the theoretical predictions for the PNC transition amplitude in Cs and Fr. Using an average value from two most accurate measurements of the vector transition polarizability, the weak charge of 133^{133}Cs is derived to amount to QW=72.65(29)exp(36)theor Q_W=-72.65(29)_{\rm exp}(36)_{\rm theor}. This value deviates by 1.1σ1.1\sigma from the prediction of the standard model. The values of the 7s7s-8s8s PNC amplitude in 223^{223}Fr and 210^{210}Fr are obtained to be -15.49(15) and -14.16(14), respectively, in units of i×1011(QW)/N\times 10^{-11}(-Q_W)/N a.u.Comment: 28 pages, 8 tables, 2 figure

    Relativistic calculations of the K-K charge transfer and K-vacancy production probabilities in low-energy ion-atom collisions

    Full text link
    The previously developed technique for evaluation of charge-transfer and electron-excitation processes in low-energy heavy-ion collisions [I.I. Tupitsyn et al., Phys. Rev. A 82, 042701(2010)] is extended to collisions of ions with neutral atoms. The method employs the active electron approximation, in which only the active electron participates in the charge transfer and excitation processes while the passive electrons provide the screening DFT potential. The time-dependent Dirac wave function of the active electron is represented as a linear combination of atomic-like Dirac-Fock-Sturm orbitals, localized at the ions (atoms). The screening DFT potential is calculated using the overlapping densities of each ions (atoms), derived from the atomic orbitals of the passive electrons. The atomic orbitals are generated by solving numerically the one-center Dirac-Fock and Dirac-Fock-Sturm equations by means of a finite-difference approach with the potential taken as the sum of the exact reference ion (atom) Dirac-Fock potential and of the Coulomb potential from the other ion within the monopole approximation. The method developed is used to calculate the K-K charge transfer and K-vacancy production probabilties for the Ne(1s22s22p6)(1s^2 2s^2 2p^6) -- F8+(1s)^{8+}(1s) collisions at the F8+(1s)^{8+}(1s) projectile energies 130 keV/u and 230 keV/u. The obtained results are compared with experimental data and other theoretical calculations. The K-K charge transfer and K-vacancy production probabilities are also calculated for the Xe -- Xe53+(1s)^{53+}(1s) collision.Comment: 16 pages, 4 figure
    corecore