87 research outputs found

    scenery: Flexible Virtual Reality Visualization on the Java VM

    Full text link
    Life science today involves computational analysis of a large amount and variety of data, such as volumetric data acquired by state-of-the-art microscopes, or mesh data from analysis of such data or simulations. Visualization is often the first step in making sense of data, and a crucial part of building and debugging analysis pipelines. It is therefore important that visualizations can be quickly prototyped, as well as developed or embedded into full applications. In order to better judge spatiotemporal relationships, immersive hardware, such as Virtual or Augmented Reality (VR/AR) headsets and associated controllers are becoming invaluable tools. In this work we introduce scenery, a flexible VR/AR visualization framework for the Java VM that can handle mesh and large volumetric data, containing multiple views, timepoints, and color channels. scenery is free and open-source software, works on all major platforms, and uses the Vulkan or OpenGL rendering APIs. We introduce scenery's main features and example applications, such as its use in VR for microscopy, in the biomedical image analysis software Fiji, or for visualizing agent-based simulations.Comment: Added IEEE DOI, version published at VIS 201

    Curvature-coupling dependence of membrane protein diffusion coefficients

    Full text link
    We consider the lateral diffusion of a protein interacting with the curvature of the membrane. The interaction energy is minimized if the particle is at a membrane position with a certain curvature that agrees with the spontaneous curvature of the particle. We employ stochastic simulations that take into account both the thermal fluctuations of the membrane and the diffusive behavior of the particle. In this study we neglect the influence of the particle on the membrane dynamics, thus the membrane dynamics agrees with that of a freely fluctuating membrane. Overall, we find that this curvature-coupling substantially enhances the diffusion coefficient. We compare the ratio of the projected or measured diffusion coefficient and the free intramembrane diffusion coefficient, which is a parameter of the simulations, with analytical results that rely on several approximations. We find that the simulations always lead to a somewhat smaller diffusion coefficient than our analytical approach. A detailed study of the correlations of the forces acting on the particle indicates that the diffusing inclusion tries to follow favorable positions on the membrane, such that forces along the trajectory are on average smaller than they would be for random particle positions.Comment: 16 pages, 8 figure

    Parameter identification problems in the modelling of cell motility

    Get PDF
    We present a novel parameter identification algorithm for the estimation of parameters in models of cell motility using imaging data of migrating cells. Two alternative formulations of the objective functional that measures the difference between the computed and observed data are proposed and the parameter identification problem is formulated as a minimisation problem of nonlinear least squares type. A Levenberg–Marquardt based optimisation method is applied to the solution of the minimisation problem and the details of the implementation are discussed. A number of numerical experiments are presented which illustrate the robustness of the algorithm to parameter identification in the presence of large deformations and noisy data and parameter identification in three dimensional models of cell motility. An application to experimental data is also presented in which we seek to identify parameters in a model for the monopolar growth of fission yeast cells using experimental imaging data. Our numerical tests allow us to compare the method with the two different formulations of the objective functional and we conclude that the results with both objective functionals seem to agree

    Tracking Growing Axons by Particle Filtering in 3D+t Fluorescent Two-Photon Microscopy Images

    Get PDF
    International audienceAnalyzing the behavior of axons in the developing nervous systems is essential for biologists to understand the biological mechanisms underlying how growing axons reach their target cells. The analysis of the motion patterns of growing axons requires detecting axonal tips and tracking their trajectories within complex and large data sets. When performed manually, the tracking task is arduous and time-consuming. To this end, we propose a tracking method, based on the particle filtering technique, to follow the traces of axonal tips that appear as small bright spots in the 3D+t fluorescent two-photon microscopy images exhibiting low signal-to-noise ratios (SNR) and complex background. The proposed tracking method uses multiple dynamic models in the proposal distribution to predict the positions of the growing axons. Furthermore, it incorporates object appearance, motion characteristics of the growing axons, and filament information in the computation of the observation model. The integration of these three sources prevents the tracker from being distracted by other objects that have appearances similar to the tracked objects, resulting in improved accuracy of recovered trajectories. The experimental results obtained from the microscopy images show that the proposed method can successfully estimate trajectories of growing axons, demonstrating its effectiveness even under the presence of noise and complex background

    Proteome sequence features carry signatures of the environmental niche of prokaryotes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prokaryotic environmental adaptations occur at different levels within cells to ensure the preservation of genome integrity, proper protein folding and function as well as membrane fluidity. Although specific composition and structure of cellular components suitable for the variety of extreme conditions has already been postulated, a systematic study describing such adaptations has not yet been performed. We therefore explored whether the environmental niche of a prokaryote could be deduced from the sequence of its proteome. Finally, we aimed at finding the precise differences between proteome sequences of prokaryotes from different environments.</p> <p>Results</p> <p>We analyzed the proteomes of 192 prokaryotes from different habitats. We collected detailed information about the optimal growth conditions of each microorganism. Furthermore, we selected 42 physico-chemical properties of amino acids and computed their values for each proteome. Further, on the same set of features we applied two fundamentally different machine learning methods, Support Vector Machines and Random Forests, to successfully classify between bacteria and archaea, halophiles and non-halophiles, as well as mesophiles, thermophiles and mesothermophiles. Finally, we performed feature selection by using Random Forests.</p> <p>Conclusions</p> <p>To our knowledge, this is the first time that three different classification cases (domain of life, halophilicity and thermophilicity) of proteome adaptation are successfully performed with the same set of 42 features. The characteristic features of a specific adaptation constitute a signature that may help understanding the mechanisms of adaptation to extreme environments.</p

    Protein Diffusion in Mammalian Cell Cytoplasm

    Get PDF
    We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribution of a non-binding fluorescent protein. Distinction can now be made within this method between diffusion in the liquid phase of the cell (cytosol/nucleosol) and the cytoplasm/nucleoplasm. Here we applied the method to analyze fluorescence recovery after photobleach (FRAP) experiments in which the diffusion coefficient of a freely-diffusing model protein was determined for two different cell lines, and to explain the clear difference typically observed between conventional FRAP results and those of fluorescence correlation spectroscopy (FCS). A large difference was found in the FRAP experiments between diffusion in the cytoplasm/nucleoplasm and in the cytosol/nucleosol, for all of which the diffusion coefficients were determined. The cytosol results were found to be in very good agreement with those by FCS

    Objective comparison of particle tracking methods

    Get PDF
    Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers

    Lentiviral Vectors and Protocols for Creation of Stable hESC Lines for Fluorescent Tracking and Drug Resistance Selection of Cardiomyocytes

    Get PDF
    Developmental, physiological and tissue engineering studies critical to the development of successful myocardial regeneration therapies require new ways to effectively visualize and isolate large numbers of fluorescently labeled, functional cardiomyocytes.Here we describe methods for the clonal expansion of engineered hESCs and make available a suite of lentiviral vectors for that combine Blasticidin, Neomycin and Puromycin resistance based drug selection of pure populations of stem cells and cardiomyocytes with ubiquitous or lineage-specific promoters that direct expression of fluorescent proteins to visualize and track cardiomyocytes and their progenitors. The phospho-glycerate kinase (PGK) promoter was used to ubiquitously direct expression of histone-2B fused eGFP and mCherry proteins to the nucleus to monitor DNA content and enable tracking of cell migration and lineage. Vectors with T/Brachyury and alpha-myosin heavy chain (alphaMHC) promoters targeted fluorescent or drug-resistance proteins to early mesoderm and cardiomyocytes. The drug selection protocol yielded 96% pure cardiomyocytes that could be cultured for over 4 months. Puromycin-selected cardiomyocytes exhibited a gene expression profile similar to that of adult human cardiomyocytes and generated force and action potentials consistent with normal fetal cardiomyocytes, documenting these parameters in hESC-derived cardiomyocytes and validating that the selected cells retained normal differentiation and function.The protocols, vectors and gene expression data comprise tools to enhance cardiomyocyte production for large-scale applications
    corecore