24,739 research outputs found

    Structuring the three electric field components of light

    Get PDF
    International audienceUnless the beam's transverse electric field components are divergence-free in the two-dimensional transverse plane [1], tightly focused light typically leads to a non-negligible longitudinal electric field component [2], where the terms longitudinal and transverse electric field components refer to the components of the electric field that are parallel or perpendicular, respectively, to the direction of the mean Poynting flux. Having a longitudinal electric field component does not add a new degree of freedom, in the sense that all components of the electric and magnetic fields are still fixed by prescribing two electric field components in a plane. However, it is the electric field component parallel to the direction of the Poynting flux that makes it somewhat special

    The search for novel analgesics: re-examining spinal cord circuits with new tools

    Get PDF
    In this perspective, we propose the absence of detailed information regarding spinal cord circuits that process sensory information remains a major barrier to advancing analgesia. We highlight recent advances showing that functionally discrete populations of neurons in the spinal cord dorsal horn play distinct roles in processing sensory information. We then discuss new molecular, electrophysiological, and optogenetic techniques that can be employed to understand how dorsal horn circuits process tactile and nociceptive information. We believe this information can drive the development of entirely new classes of pharmacotherapies that target key elements in spinal circuits to selectively modify sensory function and blunt pain

    HERschel Observations of Edge-on Spirals (HEROES). II: Tilted-ring modelling of the atomic gas disks

    Get PDF
    Context. Edge-on galaxies can offer important insights in galaxy evolution as they are the only systems where the distribution of the different components can be studied both radially and vertically. The HEROES project was designed to investigate the interplay between the gas, dust, stars and dark matter (DM) in a sample of 7 massive edge-on spiral galaxies. Aims. In this second HEROES paper we present an analysis of the atomic gas content of 6 out of 7 galaxies in our sample. The remaining galaxy was recently analysed according to the same strategy. The primary aim of this work is to constrain the surface density distribution, the rotation curve and the geometry of the gas disks in a homogeneous way. In addition we identify peculiar features and signs of recent interactions. Methods. We construct detailed tilted-ring models of the atomic gas disks based on new GMRT 21-cm observations of NGC 973 and UGC 4277 and re-reduced archival HI data of NGC 5907, NGC 5529, IC 2531 and NGC 4217. Potential degeneracies between different models are resolved by requiring a good agreement with the data in various representations of the data cubes. Results. From our modelling we find that all but one galaxy are warped along the major axis. In addition, we identify warps along the line of sight in three galaxies. A flaring gas layer is required to reproduce the data only for one galaxy, but (moderate) flares cannot be ruled for the other galaxies either. A coplanar ring-like structure is detected outside the main disk of NGC 4217, which we suggest could be the remnant of a recent minor merger event. We also find evidence for a radial inflow of 15 +- 5 km/s in the disk of NGC 5529, which might be related to the ongoing interaction with two nearby companions. (Abridged)Comment: 39 pages, 38 figures, Accepted for publication in Astronomy & Astrophysic

    Rate of convergence of linear functions on the unitary group

    Full text link
    We study the rate of convergence to a normal random variable of the real and imaginary parts of Tr(AU), where U is an N x N random unitary matrix and A is a deterministic complex matrix. We show that the rate of convergence is O(N^{-2 + b}), with 0 <= b < 1, depending only on the asymptotic behaviour of the singular values of A; for example, if the singular values are non-degenerate, different from zero and O(1) as N -> infinity, then b=0. The proof uses a Berry-Esse'en inequality for linear combinations of eigenvalues of random unitary, matrices, and so appropriate for strongly dependent random variables.Comment: 34 pages, 1 figure; corrected typos, added remark 3.3, added 3 reference

    Vacuum Polarization and the Electric Charge of the Positron

    Full text link
    We show that higher-order vacuum polarization would contribute a measureable net charge to atoms, if the charges of electrons and positrons do not balance precisely. We obtain the limit Qe+Qeˉ<1018e|Q_e+Q_{\bar e}| < 10^{-18} e for the sum of the charges of electron and positron. This also constitutes a new bound on certain violations of PCT invariance.Comment: 9 pages, 1 figure attached as PostScript file, DUKE-TH-92-38. Revised versio

    Phase Heterogeneity in Cholesterol-Containing Ternary Phospholipid Lamellar Phases

    Get PDF
    Pseudo-ternary mixtures of lamellar phase phospholipids (DPPC and brain sphingomyelin with cholesterol) were studied below T m while comparing the influence of cholesterol content, temperature, and the presence of small quantities of vitamin D binding protein (DBP) or vitamin D receptor (VDR). The measurements, conducted by X-ray diffraction (XRD) and nuclear magnetic resonance (NMR), cover a range of cholesterol concentrations (20% mol. wt to 40% mol. wt.) and physiologically relevant temperature range (294-314 K). In addition to rich intraphase behavior, data and modeling are used to approximate the lipids' headgroup location variations under the abovementioned experimental conditions

    Critical scaling in standard biased random walks

    Full text link
    The spatial coverage produced by a single discrete-time random walk, with asymmetric jump probability p1/2p\neq 1/2 and non-uniform steps, moving on an infinite one-dimensional lattice is investigated. Analytical calculations are complemented with Monte Carlo simulations. We show that, for appropriate step sizes, the model displays a critical phenomenon, at p=pcp=p_c. Its scaling properties as well as the main features of the fragmented coverage occurring in the vicinity of the critical point are shown. In particular, in the limit ppcp\to p_c, the distribution of fragment lengths is scale-free, with nontrivial exponents. Moreover, the spatial distribution of cracks (unvisited sites) defines a fractal set over the spanned interval. Thus, from the perspective of the covered territory, a very rich critical phenomenology is revealed in a simple one-dimensional standard model.Comment: 4 pages, 4 figure

    Improved Theory of the Muonium Hyperfine Structure

    Full text link
    Terms contributing to the hyperfine structure of the muonium ground state at the level of few tenths of kHz have been evaluated. The α2(Zα)\alpha^2 (Z\alpha) radiative correction has been calculated numerically to the precision of 0.02 kHz. Leading ln(Zα)\ln (Z\alpha ) terms of order α4n(Zα)n,n=1,2,3,\alpha^{4-n} (Z\alpha)^n , n=1,2,3, and some relativistic corrections have been evaluated analytically. The theoretical uncertainty is now reduced to 0.17 kHz. At present, however, it is not possible to test QED to this precision because of the 1.34 kHz uncertainty due to the muon mass.Comment: 11 pages + 2 figures (included), RevTeX 3.0, CLNS 94/127

    Quantum gates with "hot" trapped ions

    Full text link
    We propose a scheme to perform a fundamental two-qubit gate between two trapped ions using ideas from atom interferometry. As opposed to the scheme considered by J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995), it does not require laser cooling to the motional ground state.Comment: 4 pages, 2 eps figure

    Scaling in Plasticity-Induced Cell-Boundary Microstructure: Fragmentation and Rotational Diffusion

    Full text link
    We develop a simple computational model for cell boundary evolution in plastic deformation. We study the cell boundary size distribution and cell boundary misorientation distribution that experimentally have been found to have scaling forms that are largely material independent. The cell division acts as a source term in the misorientation distribution which significantly alters the scaling form, giving it a linear slope at small misorientation angles as observed in the experiments. We compare the results of our simulation to two closely related exactly solvable models which exhibit scaling behavior at late times: (i) fragmentation theory and (ii) a random walk in rotation space with a source term. We find that the scaling exponents in our simulation agree with those of the theories, and that the scaling collapses obey the same equations, but that the shape of the scaling functions depend upon the methods used to measure sizes and to weight averages and histograms
    corecore