10,786 research outputs found

    Anomalous Radio-Wave Scattering from Interstellar Plasma Structures

    Full text link
    This paper considers scattering screens that have arbitrary spatial variations of scattering strength transverse to the line of sight, including screens that are spatially well confined, such as disks and filaments. We calculate the scattered image of a point source and the observed pulse shape of a scattered impulse. The consequences of screen confinement include: (1) Source image shapes that are determined by the physical extent of the screen rather than by the shapes of much-smaller diffracting microirregularities. These include image elongations and orientations that are frequency dependent. (2) Variation with frequency of angular broadening that is much weaker than the trademark \nu^{-2} scaling law (for a cold, unmagnetized plasma), including frequency-independent cases; and (3) Similar departure of the pulse broadening time from the usually expected \nu^{-4} scaling law. We briefly discuss applications that include scattering of pulses from the Crab pulsar by filaments in the Crab Nebula; image asymmetries from Galactic scattering of the sources Cyg X-3, Sgr A*, and NGC 6334B; and scattering of background active galactic nuclei by intervening galaxies. We also address the consequences for inferences about the shape of the wavenumber spectrum of electron density irregularities, which depend on scaling laws for the image size and the pulse broadening. Future low-frequency (< 100 MHz) array observations will also be strongly affected by the Galactic structure of scattering material. Our formalism is derived in the context of radio scattering by plasma density fluctuations. It is also applicable to optical, UV and X-ray scattering by grains in the interstellar medium.Comment: 21 pages, LaTeX2e with AASTeX-4.0, 6 PostScript figures, accepted by ApJ, revised version has minor changes to respond to referee comments and suggestion

    Diurnal variation in harbour porpoise detection – potential implications for management

    Get PDF
    Peer reviewedPublisher PD

    Non-Gaussian Radio-Wave Scattering in the Interstellar Medium

    Full text link
    It was recently suggested by Boldyrev & Gwinn that the characteristics of radio scintillations from distant pulsars are best understood if the interstellar electron-density fluctuations that cause the time broadening of the radio pulses obey non-Gaussian statistics. In this picture the density fluctuations are inferred to be strong on very small scales (∌108−1010cm\sim 10^8-10^{10} {cm}). We argue that such density structures could correspond to the ionized boundaries of molecular regions (clouds) and demonstrate that the power-law distribution of scattering angles that is required to match the observations arises naturally from the expected intersections of our line of sight with randomly distributed, thin, approximately spherical ionized shells of this type. We show that the observed change in the time-broadening behavior for pulsar dispersion measures â‰Č30pccm−3\lesssim 30 {\rm pc} {\rm cm}^{-3} is consistent with the expected effect of the general ISM turbulence, which should dominate the scattering for nearby pulsars. We also point out that if the clouds are ionized by nearby stars, then their boundaries may become turbulent on account of an ionization front instability. This turbulence could be an alternative cause of the inferred density structures. An additional effect that might contribute to the strength of the small-scale fluctuations in this case is the expected flattening of the turbulent density spectrum when the eddy sizes approach the proton gyroscale.Comment: 15 pages, 3 figures, accepted to Ap

    Improved methods for detecting gravitational waves associated with short gamma-ray bursts

    Get PDF
    In the era of second generation ground-based gravitational wave detectors, short gamma-ray bursts (GRBs) will be among the most promising astrophysical events for joint electromagnetic and gravitational wave observation. A targeted search for gravitational wave compact binary merger signals in coincidence with short GRBs was developed and used to analyze data from the first generation LIGO and Virgo instruments. In this paper, we present improvements to this search that enhance our ability to detect gravitational wave counterparts to short GRBs. Specifically, we introduce an improved method for estimating the gravitational wave background to obtain the event significance required to make detections; implement a method of tiling extended sky regions, as required when searching for signals associated to poorly localized GRBs from Fermi Gamma-ray Burst Monitor or the InterPlanetary Network; and incorporate astrophysical knowledge about the beaming of GRB emission to restrict the search parameter space. We describe the implementation of these enhancements and demonstrate how they improve the ability to observe binary merger gravitational wave signals associated with short GRBs.Comment: 13 pages, 6 figure

    Spectroscopic applications and frequency locking of THz photomixing with distributed-Bragg-reflector diode lasers in low-temperature-grown GaAs

    Get PDF
    A compact, narrow-linewidth, tunable source of THz radiation has been developed for spectroscopy and other high-resolution applications. Distributed-Bragg-reflector (DBR) diode lasers at 850 nm are used to pump a low-temperature-grown GaAs photomixer. Resonant optical feedback is employed to stabilize the center frequencies and narrow the linewidths of the DBR lasers. The heterodyne linewidth full-width at half-maximum of two optically locked DBR lasers is 50 kHz on the 20 ms time scale and 2 MHz over 10 s; free-running DBR lasers have linewidths of 40 and 90 MHz on such time scales. This instrument has been used to obtain rotational spectra of acetonitrile (CH3CN) at 313 GHz. Detection limits of 1 × 10^–4 Hz^1/2 (noise/total power) have been achieved, with the noise floor dominated by the detector's noise equivalent power

    Commissioning of the electron injector for the AWAKE experiment

    Get PDF
    The advanced wakefield experiment (AWAKE) at CERN is the first proton beam-driven plasma wakefield acceleration experiment. The main goal of AWAKE RUN 1 was to demonstrate seeded self-modulation (SSM) of the proton beam and electron witness beam acceleration in the plasma wakefield. For the AWAKE experiment, a 10-meter-long Rubidium-vapor cell together with a high-power laser for ionization was used to generate the plasma. The plasma wakefield is driven by a 400 GeV/c proton beam extracted from the super proton synchrotron (SPS), which undergoes a seeded self-modulation process in the plasma. The electron witness beam used to probe the wakefields is generated from an S-band RF photo-cathode gun and then accelerated by a booster structure up to energies between 16 and 20 MeV. The first run of the AWAKE experiment revealed that the maximum energy gain after the plasma cell is 2 GeV, and the SSM mechanism of the proton beam was verified. In this paper, we will present the details of the AWAKE electron injector. A comparison of the measured electron beam parameters, such as beam size, energy, and normalized emittance, with the simulation results was performed

    The Ethics of Corporate Governance

    Get PDF
    How should corporate directors determine what is the right decision? For at least the past 30 years the debate has raged as to whether shareholder value should take precedence over corporate social responsibility when crucial decisions arise. Directors face pressure, not least from ethical investors, to do the good thing when they seek to make the right choice. Corporate governance theory has tended to look to agency theory and the need of boards to curb excessive executive power to guide directors' decisions. While useful for those purposes, agency theory provides only limited guidance. Supplementing it with the alternatives - stakeholder theory and stewardship theory - tends to put directors in conflict with their legal obligations to work in the interests of shareholders. This paper seeks to reframe the discussion about corporate governance in terms of the ethical debate between consequential, teleological approaches to ethics and idealist, deontological ones, suggesting that directors are - for good reason - more inclined toward utilitarian judgments like those underpinning shareholder value. But the problems with shareholder value have become so great that a different framework is needed: strategic value, with an emphasis on long-term value creation judged from a decidedly utilitarian standpoint
    • 

    corecore