40 research outputs found

    Super-Radiance and the Unstable Photon Oscillator

    Full text link
    If the damping of a simple harmonic oscillator from a thermally random force is sufficiently strong, then the oscillator may become unstable. For a photon oscillator (radiatively damped by electric dipole moments), the instability leads to a low temperature Hepp-Lieb-Preparata super-radiant phase transition. The stable oscillator regime is described by the free energy of the conventional Casimir effect. The unstable (strongly damped) oscillator has a free energy corresponding to Dicke super-radiance.Comment: 6 pages ReVTeX 2 figures *.ep

    Origin of second-harmonic generation in the incommensurate phase of K2SeO4

    Full text link
    We show that a ferroelectric phase transition takes place in the incommensurate phase of the K2SeO4 crystal. The ferroelectric character of the IC phase explains the second-harmonic generation observed in the corresponding temperature range.Comment: 5 pages, 1 figur

    Disclination Asymmetry in Two-Dimensional Nematic Liquid Crystals with Unequal Frank Constants

    Full text link
    The behavior of a thin film of nematic liquid crystal with unequal Frank constants is discussed. Distinct Frank constants are found to imply unequal core energies for +1/2+1/2 and 1/2-1/2 disclinations. Even so, a topological constraint is shown to ensure that the bulk densities of the two types of disclinations are the same. For a system with free boundary conditions, such as a liquid membrane, unequal core energies simply renormalize the Gaussian rigidity and line tension.Comment: RevTex forma

    An operator representation for Matsubara sums

    Full text link
    In the context of the imaginary-time formalism for a scalar thermal field theory, it is shown that the result of performing the sums over Matsubara frequencies associated with loop Feynman diagrams can be written, for some classes of diagrams, in terms of the action of a simple linear operator on the corresponding energy integrals of the Euclidean theory at T=0. In its simplest form the referred operator depends only on the number of internal propagators of the graph. More precisely, it is shown explicitly that this \emph{thermal operator representation} holds for two generic classes of diagrams, namely, the two-vertex diagram with an arbitrary number of internal propagators, and the one-loop diagram with an arbitrary number of vertices. The validity of the thermal operator representation for diagrams of more complicated topologies remains an open problem. Its correctness is shown to be equivalent to the correctness of some diagrammatic rules proposed a few years ago.Comment: 4 figures; references added, minor changes in notation, final version accepted for publicatio

    Kinetic vs. Thermal-Field-Theory Approach to Cosmological Perturbations

    Full text link
    A closed set of equations for the evolution of linear perturbations of homogeneous, isotropic cosmological models can be obtained in various ways. The simplest approach is to assume a macroscopic equation of state, e.g.\ that of a perfect fluid. For a more refined description of the early universe, a microscopic treatment is required. The purpose of this paper is to compare the approach based on classical kinetic theory to the more recent thermal-field-theory approach. It is shown that in the high-temperature limit the latter describes cosmological perturbations supported by collisionless, massless matter, wherein it is equivalent to the kinetic theory approach. The dependence of the perturbations in a system of a collisionless gas and a perfect fluid on the initial data is discussed in some detail. All singular and regular solutions are found analytically.Comment: 31 pages, 10 figures (uu encoded ps-file appended), REVTEX 3.0, DESY 94-040 / TUW-93-2

    d-wave superconductivity near charge instabilities

    Full text link
    We investigate the symmetry of the superconducting order parameter in the proximity of a phase-separation or of an incommensurate charge-density-wave instability. The attractive effective interaction at small or intermediate transferred momenta is singular near the instability. This strongly qq-dependent interaction, together with a residual local repulsion between the quasiparticles and an enhanced density of states for band structures appropriate for the high temperature superconducting oxides, strongly favors the formation of dd-wave superconductivity. The relative stability with respect to superconductivity in the ss-wave channel is discussed in detail, finding this latter hardly realized in the above conditions. The superconducting temperature is mostly determined by the closeness to the quantum critical point associated to the charge instability and displays a stronger dependence on doping with respect to the simple proximity to a Van Hove singularity. The relevance of this scenario and the generic agreement of the resulting phase diagram with the properties displayed by high temperature superconducting oxides is discussed.Comment: 1 revtex file and 12 postscript figure
    corecore