195 research outputs found

    Manejo florestal comunitário madeireiro na região Transamazônica.

    Get PDF
    bitstream/item/38633/1/ManejFlorestalcomunitario.pdfCartilha

    Field-induced nematic-like magnetic transition in an iron pnictide superconductor, Ca10_{10}(Pt3_{3}As8_{8})((Fe1x_{1-x}Ptx_{x})2_{2}As2_{2})5_{5}

    Get PDF
    We report a high magnetic field study up to 55 T of the nearly optimally doped iron-pnictide superconductor Ca10_{10}(Pt3_{3}As8_{8}) ((Fe1x_{1-x}Ptx_{x})2_{2}As2_{2})5_{5} (x=0.078(6)) with a Tc 10 K using magnetic torque, tunnel diode oscillator technique and transport measurements. We determine the superconducting phase diagram, revealing an anisotropy of the irreversibility field up to a factor of 10 near Tc and signatures of multiband superconductivity. Unexpectedly, we find a spin-flop like anomaly in magnetic torque at 22 T, when the magnetic field is applied perpendicular to the ab planes, which becomes significantly more pronounced as the temperature is lowered to 0.33 K. As our superconducting sample lies well outside the antiferromagnetic region of the phase diagram, the observed field-induced transition in torque indicates a spin-flop transition not of long-range ordered moments, but of nematic-like antiferromagnetic fluctuations.Comment: Latex, 4 figure

    Generalized Ladder Operators for Shape-invariant Potentials

    Full text link
    A general form for ladder operators is used to construct a method to solve bound-state Schr\"odinger equations. The characteristics of supersymmetry and shape invariance of the system are the start point of the approach. To show the elegance and the utility of the method we use it to obtain energy spectra and eigenfunctions for the one-dimensional harmonic oscillator and Morse potentials and for the radial harmonic oscillator and Coulomb potentials.Comment: in Revte

    Utilization of the wastes of vital activity

    Get PDF
    The recycling of wastes from the biological complex for use in life-support systems is discussed. Topics include laboratory equipment, heat treatment of waste materials, mineralization of waste products, methods for production of ammonium hydroxide and nitric acid, the extraction of sodium chloride from mineralized products, and the recovery of nutrient substances for plants from urine

    Upper critical magnetic field in K0.83Fe1.83Se2 and Eu0.5K0.5Fe2As2 single crystals

    Get PDF
    The H-T phase diagrams of single crystalline electron-doped K0.83Fe1.83Se2 (KFS1), K0.8Fe2Se2 (KFS2) and hole-doped Eu0.5K0.5Fe2As2 (EKFA) have been deduced from tunnel diode oscillator-based contactless measurements in pulsed magnetic fields up to 57 T for the inter-plane (H//c) and in-plane (H//ab) directions. The temperature dependence of the upper critical magnetic field Hc2(T) relevant to EFKA is accounted for by the Pauli model including an anisotropic Pauli paramagnetic contribution (\mu_BHp=114 T for H//ab and 86 T for H//c). This is also the case of KFS1 and KFS2 for H//ab whereas a significant upward curvature, accounted for by a two-gap model, is observed for H//c. Despite the presence of antiferromagnetic lattice order within the superconducting state of the studied compounds, no influence of magnetic ordering on the temperature dependence of Hc2(T) is observed.Comment: 9 pages, 5 figures. arXiv admin note: text overlap with arXiv:1104.561

    Quenched nematic criticality separating two superconducting domes in an iron-based superconductor under pressure

    Full text link
    The nematic electronic state and its associated nematic critical fluctuations have emerged as potential candidates for superconducting pairing in various unconventional superconductors. However, in most materials their coexistence with other magnetically-ordered phases poses significant challenges in establishing their importance. Here, by combining chemical and hydrostatic physical pressure in FeSe0.89_{0.89}S0.11_{0.11}, we provide a unique access to a clean nematic quantum phase transition in the absence of a long-range magnetic order. We find that in the proximity of the nematic phase transition, there is an unusual non-Fermi liquid behavior in resistivity at high temperatures that evolves into a Fermi liquid behaviour at the lowest temperatures. From quantum oscillations in high magnetic fields, we trace the evolution of the Fermi surface and electronic correlations as a function of applied pressure. We detect experimentally a Lifshitz transition that separates two distinct superconducting regions: one emerging from the nematic electronic phase with a small Fermi surface and strong electronic correlations and the other one with a large Fermi surface and weak correlations that promotes nesting and stabilization of a magnetically-ordered phase at high pressures. The lack of mass divergence suggests that the nematic critical fluctuations are quenched by the strong coupling to the lattice. This establishes that superconductivity is not enhanced at the nematic quantum phase transition in the absence of magnetic order.Comment: 4 figures, 9 page
    corecore