85 research outputs found
The cystic fibrosis transmembrane recruiter the alter ego of CFTR as a multi-kinase anchor
This review focuses on a newly discovered interaction between protein kinases involved in cellular energetics, a process that may be disturbed in cystic fibrosis for unknown reasons. I propose a new model where kinase-mediated cellular transmission of energy provides mechanistic insight to a latent role of the cystic fibrosis transmembrane conductance regulator (CFTR). I suggest that CFTR acts as a multi-kinase recruiter to the apical epithelial membrane. My group finds that, in the cytosol, two protein kinases involved in cell energy homeostasis, nucleoside diphosphate kinase (NDPK) and AMP-activated kinase (AMPK), bind one another. Preliminary data suggest that both can also bind CFTR (function unclear). The disrupted role of this CFTR-kinase complex as ‘membrane transmitter to the cell’ is proposed as an alternative paradigm to the conventional ion transport mediated and CFTR/chloride-centric view of cystic fibrosis pathogenesis. Chloride remains important, but instead, chloride-induced control of the phosphohistidine content of one kinase component (NDPK, via a multi-kinase complex that also includes a third kinase, CK2; formerly casein kinase 2). I suggest that this complex provides the necessary near-equilibrium conditions needed for efficient transmission of phosphate energy to proteins controlling cellular energetics. Crucially, a new role for CFTR as a kinase controller is proposed with ionic concentration acting as a signal. The model posits a regulatory control relay for energy sensing involving a cascade of protein kinases bound to CFTR
Segmentation of corpus callosum using diffusion tensor imaging: validation in patients with glioblastoma
Abstract
Background
This paper presents a three-dimensional (3D) method for segmenting corpus callosum in normal subjects and brain cancer patients with glioblastoma.
Methods
Nineteen patients with histologically confirmed treatment naïve glioblastoma and eleven normal control subjects underwent DTI on a 3T scanner. Based on the information inherent in diffusion tensors, a similarity measure was proposed and used in the proposed algorithm. In this algorithm, diffusion pattern of corpus callosum was used as prior information. Subsequently, corpus callosum was automatically divided into Witelson subdivisions. We simulated the potential rotation of corpus callosum under tumor pressure and studied the reproducibility of the proposed segmentation method in such cases.
Results
Dice coefficients, estimated to compare automatic and manual segmentation results for Witelson subdivisions, ranged from 94% to 98% for control subjects and from 81% to 95% for tumor patients, illustrating closeness of automatic and manual segmentations. Studying the effect of corpus callosum rotation by different Euler angles showed that although segmentation results were more sensitive to azimuth and elevation than skew, rotations caused by brain tumors do not have major effects on the segmentation results.
Conclusions
The proposed method and similarity measure segment corpus callosum by propagating a hyper-surface inside the structure (resulting in high sensitivity), without penetrating into neighboring fiber bundles (resulting in high specificity)
Analysis of the 10q23 chromosomal region and the PTEN gene in human sporadic breast carcinoma
We examined a panel of sporadic breast carcinomas for loss of heterozygosity (LOH) in a 10-cM interval on chromosome 10 known to encompass the PTEN gene. We detected allele loss in 27 of 70 breast tumour DNAs. Fifteen of these showed loss limited to a subregion of the area studied. The most commonly deleted region was flanked by D10S215 and D10S541 and encompasses the PTEN locus. We used a combination of denaturing gradient gel electrophoresis and single-strand conformation polymorphism analyses to investigate the presence of PTEN mutations in tumours with LOH in this region. We did not detect mutations of PTEN in any of these tumours. Our data show that, in sporadic breast carcinoma, loss of heterozygosity of the PTEN locus is frequent, but mutation of PTEN is not. These results are consistent with loss of another unidentified tumour suppressor in this region in sporadic breast carcinoma. © 1999 Cancer Research Campaig
Translocator protein is a marker of activated microglia in rodent models but not human neurodegenerative diseases
Microglial activation plays central roles in neuroinflammatory and neurodegenerative diseases. Positron emission tomography (PET) targeting 18 kDa Translocator Protein (TSPO) is widely used for localising inflammation in vivo, but its quantitative interpretation remains uncertain. We show that TSPO expression increases in activated microglia in mouse brain disease models but does not change in a non-human primate disease model or in common neurodegenerative and neuroinflammatory human diseases. We describe genetic divergence in the TSPO gene promoter, consistent with the hypothesis that the increase in TSPO expression in activated myeloid cells depends on the transcription factor AP1 and is unique to a subset of rodent species within the Muroidea superfamily. Finally, we identify LCP2 and TFEC as potential markers of microglial activation in humans. These data emphasise that TSPO expression in human myeloid cells is related to different phenomena than in mice, and that TSPO-PET signals in humans reflect the density of inflammatory cells rather than activation state.Published versionThe authors thank the UK MS Society for financial support (grant number: C008-16.1). DRO was funded by an MRC Clinician Scientist Award (MR/N008219/1). P.M.M. acknowledges generous support from Edmond J Safra Foundation and Lily Safra, the NIHR Senior Investigator programme and the UK Dementia Research Institute which receives its funding from DRI Ltd., funded by the UK Medical Research Council, Alzheimer’s Society, and Alzheimer’s Research UK. P.M.M. and D.R.O. thank the Imperial College Healthcare Trust-NIHR Biomedical Research Centre for infrastructure support and the Medical Research Council for support of TSPO studies (MR/N016343/1). E.A. was supported by the ALS Stichting (grant “The Dutch ALS Tissue Bank”). P.M. and B.B.T. are funded by the Swiss National Science Foundation (projects 320030_184713 and 310030_212322, respectively). S.T. was supported by an “Early Postdoc.Mobility” scholarship (P2GEP3_191446) from the Swiss National Science Foundation, a “Clinical Medicine Plus” scholarship from the Prof Dr. Max Cloëtta Foundation (Zurich, Switzerland), from the Jean et Madeleine Vachoux Foundation (Geneva, Switzerland) and from the University Hospitals of Geneva. This work was funded by NIH grants U01AG061356 (De Jager/Bennett), RF1AG057473 (De Jager/Bennett), and U01AG046152 (De Jager/Bennett) as part of the AMP-AD consortium, as well as NIH grants R01AG066831 (Menon) and U01AG072572 (De Jager/St George-Hyslop)
Early childhood pedagogies: spaces for young children to flourish
This paper introduces the Special Issue of Early Child Development and Care focused on Early Childhood Pedagogy. It opens by considering past and present discourses concerning early childhood pedagogy, and focus is given to established philosophical underpinnings in the field and their translation to contemporary guidance, alongside research and policy. It is argued that early childhood pedagogy is a contested, complex and diverse space, yet these factors are entirely appropriate for supporting young children to flourish as valued individuals in different contexts. Building on this argument, it is posited that it may be more appropriate to discuss early childhood pedagogies rather than early childhood pedagogy. The paper goes on to critique a range of established early childhood pedagogies, before introducing 18 papers from across the world that make exciting new contributions to the discourse. It is intended that this collection will inspire new debates and fresh endeavours concerning early childhood pedagogies
Effectiveness of CoronaVac, ChAdOx1 nCoV-19, BNT162b2, and Ad26.COV2.S among individuals with previous SARS-CoV-2 infection in Brazil: a test-negative, case-control study.
BACKGROUND: COVID-19 vaccines have proven highly effective among individuals without a previous SARS-CoV-2 infection, but their effectiveness in preventing symptomatic infection and severe outcomes among individuals with previous infection is less clear. We aimed to estimate the effectiveness of four COVID-19 vaccines against symptomatic infection, hospitalisation, and death for individuals with laboratory-confirmed previous SARS-CoV-2 infection. METHODS: Using national COVID-19 notification, hospitalisation, and vaccination datasets from Brazil, we did a test-negative, case-control study to assess the effectiveness of four vaccines (CoronaVac [Sinovac], ChAdOx1 nCoV-19 [AstraZeneca], Ad26.COV2.S [Janssen], and BNT162b2 [Pfizer-BioNtech]) for individuals with laboratory-confirmed previous SARS-CoV-2 infection. We matched cases with RT-PCR positive, symptomatic COVID-19 with up to ten controls with negative RT-PCR tests who presented with symptomatic illnesses, restricting both groups to tests done at least 90 days after an initial infection. We used multivariable conditional logistic regression to compare the odds of test positivity and the odds of hospitalisation or death due to COVID-19, according to vaccination status and time since first or second dose of vaccines. FINDINGS: Between Feb 24, 2020, and Nov 11, 2021, we identified 213 457 individuals who had a subsequent, symptomatic illness with RT-PCR testing done at least 90 days after their initial SARS-CoV-2 infection and after the vaccination programme started. Among these, 30 910 (14·5%) had a positive RT-PCR test consistent with reinfection, and we matched 22 566 of these cases with 145 055 negative RT-PCR tests from 68 426 individuals as controls. Among individuals with previous SARS-CoV-2 infection, vaccine effectiveness against symptomatic infection 14 or more days from vaccine series completion was 39·4% (95% CI 36·1-42·6) for CoronaVac, 56·0% (51·4-60·2) for ChAdOx1 nCoV-19, 44·0% (31·5-54·2) for Ad26.COV2.S, and 64·8% (54·9-72·4) for BNT162b2. For the two-dose vaccine series (CoronaVac, ChAdOx1 nCoV-19, and BNT162b2), effectiveness against symptomatic infection was significantly greater after the second dose than after the first dose. Effectiveness against hospitalisation or death 14 or more days from vaccine series completion was 81·3% (75·3-85·8) for CoronaVac, 89·9% (83·5-93·8) for ChAdOx1 nCoV-19, 57·7% (-2·6 to 82·5) for Ad26.COV2.S, and 89·7% (54·3-97·7) for BNT162b2. INTERPRETATION: All four vaccines conferred additional protection against symptomatic infections and severe outcomes among individuals with previous SARS-CoV-2 infection. The provision of a full vaccine series to individuals after recovery from COVID-19 might reduce morbidity and mortality. FUNDING: Brazilian National Research Council, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Oswaldo Cruz Foundation, JBS, Instituto de Salud Carlos III, Spanish Ministry of Science and Innovation, and Generalitat de Catalunya
Location-Specific Responses to Thermal Stress in Larvae of the Reef-Building Coral Montastraea faveolata
The potential to adapt to a changing climate depends in part upon the standing genetic variation present in wild populations. In corals, the dispersive larval phase is particularly vulnerable to the effects of environmental stress. Larval survival and response to stress during dispersal and settlement will play a key role in the persistence of coral populations.To test the hypothesis that larval transcription profiles reflect location-specific responses to thermal stress, symbiont-free gametes from three to four colonies of the scleractinian coral Montastraea faveolata were collected from Florida and Mexico, fertilized, and raised under mean and elevated (up 1 to 2 degrees C above summer mean) temperatures. These locations have been shown to exchange larvae frequently enough to prevent significant differentiation of neutral loci. Differences among 1,310 unigenes were simultaneously characterized using custom cDNA microarrays, allowing investigation of gene expression patterns among larvae generated from wild populations under stress. Results show both conserved and location-specific variation in key processes including apoptosis, cell structuring, adhesion and development, energy and protein metabolism, and response to stress, in embryos of a reef-building coral.These results provide first insights into location-specific variation in gene expression in the face of gene flow, and support the hypothesis that coral host genomes may house adaptive potential needed to deal with changing environmental conditions
- …