75 research outputs found
Institutional design and regime effectiveness in transboundary river management – the Elbe water quality regime
The literature on transboundary river management suggests that institutions play an important role in bringing about cooperation. However, knowledge about how such institutions should be designed in order to do so remains limited. One way to learn more about adequate institutional design is to assess the effectiveness of existing regimes, and to trace the causal relationships that lead to the respective outcomes. In order to gain further insights into the relationship between institutional design and regime effectiveness, this paper presents a study on the water quality regime of the International Commission for the Protection of the Elbe (ICPE). The analysis is based on a review of pertinent documents and ten qualitative interviews with Czech and German Commission members and NGO representatives. Particular emphasis has been put on determining the ICPE's specific contribution and the no-regime counterfactual as well as on the perceived expediency of the institutional arrangements. <br><br> The study shows overall that the countries were relatively successful in improving water quality in the Elbe basin. However, this outcome can only partly be attributed to the ICPE itself. Furthermore, the ICPE's contribution towards achieving the various goals varied significantly between the different areas of activity: it was relatively significant where the main responsibility for action lay with the public authorities, such as in the area of wastewater treatment and the establishment of an international alarm plan and model, but was practically non-existent in the reduction of non-point pollution from agriculture, where success depended on the behavior of individual private actors (farmers). The commission contributed towards problem solving by serving as a forum for the joint identification of priorities for action from a basin-wide perspective. The resulting international obligations increased the power of national water administrations and their access to funds. At the same time, the Commission's reporting to the public served as an enforcement mechanism. From a methodological point of view, the paper highlights the opportunities and limitations of a combined quantitative and qualitative approach to determining regime effectiveness
Aberrant phase separation and nucleolar dysfunction in rare genetic diseases
Thousands of genetic variants in protein-coding genes have been linked to disease. However, the functional impact of most variants is unknown as they occur within intrinsically disordered protein regions that have poorly defined functions1-3. Intrinsically disordered regions can mediate phase separation and the formation of biomolecular condensates, such as the nucleolus4,5. This suggests that mutations in disordered proteins may alter condensate properties and function6-8. Here we show that a subset of disease-associated variants in disordered regions alter phase separation, cause mispartitioning into the nucleolus and disrupt nucleolar function. We discover de novo frameshift variants in HMGB1 that cause brachyphalangy, polydactyly and tibial aplasia syndrome, a rare complex malformation syndrome. The frameshifts replace the intrinsically disordered acidic tail of HMGB1 with an arginine-rich basic tail. The mutant tail alters HMGB1 phase separation, enhances its partitioning into the nucleolus and causes nucleolar dysfunction. We built a catalogue of more than 200,000 variants in disordered carboxy-terminal tails and identified more than 600 frameshifts that create arginine-rich basic tails in transcription factors and other proteins. For 12 out of the 13 disease-associated variants tested, the mutation enhanced partitioning into the nucleolus, and several variants altered rRNA biogenesis. These data identify the cause of a rare complex syndrome and suggest that a large number of genetic variants may dysregulate nucleoli and other biomolecular condensates in humans.© 2023. The Author(s)
The role of valuation and bargaining in optimising transboundary watercourse treaty regimes
In the face of water scarcity, growing water demands, population increase, ecosystem degradation, climate change, and so on transboundary watercourse states inevitably have to make difficult decisions on how finite quantities of water are distributed. Such waters, and their associated ecosystem services, offer multiple benefits. Valuation and bargaining can play a key role in the sharing of these ecosystems services and their associated benefits across sovereign borders. Ecosystem services in transboundary watercourses essentially constitute a portfolio of assets. Whilst challenging, their commodification, which creates property rights, supports trading. Such trading offers a means by which to resolve conflicts over competing uses and allows states to optimise their ‘portfolios’. However, despite this potential, adoption of appropriate treaty frameworks that might facilitate a market-based approach to the discovery and allocation of water-related ecosystem services at the transboundary level remains both a challenge, and a topic worthy of further study. Drawing upon concepts in law and economics, this paper therefore seeks to advance the study of how treaty frameworks might be developed in a way that supports such a market-based approach to ecosystem services and transboundary waters
Rare variants in KDR, encoding VEGF Receptor 2, are associated with tetralogy of Fallot
Purpose Rare genetic variants in KDR, encoding the vascular endothelial growth factor receptor 2 (VEGFR2), have been reported in patients with tetralogy of Fallot (TOF). However, their role in disease causality and pathogenesis remains unclear. Methods We conducted exome sequencing in a familial case of TOF and large-scale genetic studies, including burden testing, in >1,500 patients with TOF. We studied gene-targeted mice and conducted cell-based assays to explore the role of KDR genetic variation in the etiology of TOF. Results Exome sequencing in a family with two siblings affected by TOF revealed biallelic missense variants in KDR. Studies in knock-in mice and in HEK 293T cells identified embryonic lethality for one variant when occurring in the homozygous state, and a significantly reduced VEGFR2 phosphorylation for both variants. Rare variant burden analysis conducted in a set of 1,569 patients of European descent with TOF identified a 46-fold enrichment of protein-truncating variants (PTVs) in TOF cases compared to controls (P = 7 x 10(-11)). Conclusion Rare KDR variants, in particular PTVs, strongly associate with TOF, likely in the setting of different inheritance patterns. Supported by genetic and in vivo and in vitro functional analysis, we propose loss-of-function of VEGFR2 as one of the mechanisms involved in the pathogenesis of TOF.Developmen
Integrative analysis of genomic variants reveals new associations of candidate haploinsufficient genes with congenital heart disease
Congenital Heart Disease (CHD) affects approximately 7-9 children per 1000 live births. Numerous genetic studies have established a role for rare genomic variants at the copy number variation (CNV) and single nucleotide variant level. In particular, the role of de novo mutations (DNM) has been highlighted in syndromic and non-syndromic CHD. To identify novel haploinsufficient CHD disease genes we performed an integrative analysis of CNVs and DNMs identified in probands with CHD including cases with sporadic thoracic aortic aneurysm (TAA). We assembled CNV data from 7,958 cases and 14,082 controls and performed a gene-wise analysis of the burden of rare genomic deletions in cases versus controls. In addition, we performed mutation rate testing for DNMs identified in 2,489 parent-offspring trios. Our combined analysis revealed 21 genes which were significantly affected by rare genomic deletions and/or constrained non-synonymous de novo mutations in probands. Fourteen of these genes have previously been associated with CHD while the remaining genes (FEZ1, MYO16, ARID1B, NALCN, WAC, KDM5B and WHSC1) have only been associated in singletons and small cases series, or show new associations with CHD. In addition, a systems level analysis revealed shared contribution of CNV deletions and DNMs in CHD probands, affecting protein-protein interaction networks involved in Notch signaling pathway, heart morphogenesis, DNA repair and cilia/centrosome function. Taken together, this approach highlights the importance of re-analyzing existing datasets to strengthen disease association and identify novel disease genes
- …