14 research outputs found

    Combining a hybrid robotic system with a bain-machine interface for the rehabilitation of reaching movements: A case study with a stroke patient

    Get PDF
    Reaching and grasping are two of the most affected functions after stroke. Hybrid rehabilitation systems combining Functional Electrical Stimulation with Robotic devices have been proposed in the literature to improve rehabilitation outcomes. In this work, we present the combined use of a hybrid robotic system with an EEG-based Brain-Machine Interface to detect the user's movement intentions to trigger the assistance. The platform has been tested in a single session with a stroke patient. The results show how the patient could successfully interact with the BMI and command the assistance of the hybrid system with low latencies. Also, the Feedback Error Learning controller implemented in this system could adjust the required FES intensity to perform the task

    Voluntary control of wearable robotic exoskeletons by patients with paresis via neuromechanical modeling.

    Get PDF
    BACKGROUND: Research efforts in neurorehabilitation technologies have been directed towards creating robotic exoskeletons to restore motor function in impaired individuals. However, despite advances in mechatronics and bioelectrical signal processing, current robotic exoskeletons have had only modest clinical impact. A major limitation is the inability to enable exoskeleton voluntary control in neurologically impaired individuals. This hinders the possibility of optimally inducing the activity-driven neuroplastic changes that are required for recovery. METHODS: We have developed a patient-specific computational model of the human musculoskeletal system controlled via neural surrogates, i.e., electromyography-derived neural activations to muscles. The electromyography-driven musculoskeletal model was synthesized into a human-machine interface (HMI) that enabled poststroke and incomplete spinal cord injury patients to voluntarily control multiple joints in a multifunctional robotic exoskeleton in real time. RESULTS: We demonstrated patients' control accuracy across a wide range of lower-extremity motor tasks. Remarkably, an increased level of exoskeleton assistance always resulted in a reduction in both amplitude and variability in muscle activations as well as in the mechanical moments required to perform a motor task. Since small discrepancies in onset time between human limb movement and that of the parallel exoskeleton would potentially increase human neuromuscular effort, these results demonstrate that the developed HMI precisely synchronizes the device actuation with residual voluntary muscle contraction capacity in neurologically impaired patients. CONCLUSIONS: Continuous voluntary control of robotic exoskeletons (i.e. event-free and task-independent) has never been demonstrated before in populations with paretic and spastic-like muscle activity, such as those investigated in this study. Our proposed methodology may open new avenues for harnessing residual neuromuscular function in neurologically impaired individuals via symbiotic wearable robots

    Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study

    Get PDF
    BACKGROUND: Brain injury survivors often present upper-limb motor impairment affecting the execution of functional activities such as reaching. A currently active research line seeking to maximize upper-limb motor recovery after a brain injury, deals with the combined use of functional electrical stimulation (FES) and mechanical supporting devices, in what has been previously termed hybrid robotic systems. This study evaluates from the technical and clinical perspectives the usability of an integrated hybrid robotic system for the rehabilitation of upper-limb reaching movements after a brain lesion affecting the motor function. METHODS: The presented system is comprised of four main components. The hybrid assistance is given by a passive exoskeleton to support the arm weight against gravity and a functional electrical stimulation device to assist the execution of the reaching task. The feedback error learning (FEL) controller was implemented to adjust the intensity of the electrical stimuli delivered on target muscles according to the performance of the users. This control strategy is based on a proportional-integral-derivative feedback controller and an artificial neural network as the feedforward controller. Two experiments were carried out in this evaluation. First, the technical viability and the performance of the implemented FEL controller was evaluated in healthy subjects (N = 12). Second, a small cohort of patients with a brain injury (N = 4) participated in two experimental session to evaluate the system performance. Also, the overall satisfaction and emotional response of the users after they used the system was assessed. RESULTS: In the experiment with healthy subjects, a significant reduction of the tracking error was found during the execution of reaching movements. In the experiment with patients, a decreasing trend of the error trajectory was found together with an increasing trend in the task performance as the movement was repeated. Brain injury patients expressed a great acceptance in using the system as a rehabilitation tool. CONCLUSIONS: The study demonstrates the technical feasibility of using the hybrid robotic system for reaching rehabilitation. Patients’ reports on the received intervention reveal a great satisfaction and acceptance of the hybrid robotic system

    Effectiveness of the Virtual Reality System Toyra on Upper Limb Function in People with Tetraplegia: A Pilot Randomized Clinical Trial

    No full text
    The aim of this study was to investigate the effects of a virtual reality program combined with conventional therapy in upper limb function in people with tetraplegia and to provide data about patients’ satisfaction with the virtual reality system. Thirty-one people with subacute complete cervical tetraplegia participated in the study. Experimental group received 15 sessions with Toyra® virtual reality system for 5 weeks, 30 minutes/day, 3 days/week in addition to conventional therapy, while control group only received conventional therapy. All patients were assessed at baseline, after intervention, and at three-month follow-up with a battery of clinical, functional, and satisfaction scales. Control group showed significant improvements in the manual muscle test (p = 0,043, partial η2 = 0,22) in the follow-up evaluation. Both groups demonstrated clinical, but nonsignificant, changes to their arm function in 4 of the 5 scales used. All patients showed a high level of satisfaction with the virtual reality system. This study showed that virtual reality added to conventional therapy produces similar results in upper limb function compared to only conventional therapy. Moreover, the gaming aspects incorporated in conventional rehabilitation appear to produce high motivation during execution of the assigned tasks. This trial is registered with EudraCT number 2015-002157-35

    Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: A usability study

    No full text
    © The Author(s).[Background]: Brain injury survivors often present upper-limb motor impairment affecting the execution of functional activities such as reaching. A currently active research line seeking to maximize upper-limb motor recovery after a brain injury, deals with the combined use of functional electrical stimulation (FES) and mechanical supporting devices, in what has been previously termed hybrid robotic systems. This study evaluates from the technical and clinical perspectives the usability of an integrated hybrid robotic system for the rehabilitation of upper-limb reaching movements after a brain lesion affecting the motor function. [Methods]: The presented system is comprised of four main components. The hybrid assistance is given by a passive exoskeleton to support the arm weight against gravity and a functional electrical stimulation device to assist the execution of the reaching task. The feedback error learning (FEL) controller was implemented to adjust the intensity of the electrical stimuli delivered on target muscles according to the performance of the users. This control strategy is based on a proportional-integral-derivative feedback controller and an artificial neural network as the feedforward controller. Two experiments were carried out in this evaluation. First, the technical viability and the performance of the implemented FEL controller was evaluated in healthy subjects (N = 12). Second, a small cohort of patients with a brain injury (N = 4) participated in two experimental session to evaluate the system performance. Also, the overall satisfaction and emotional response of the users after they used the system was assessed. [Results]: In the experiment with healthy subjects, a significant reduction of the tracking error was found during the execution of reaching movements. In the experiment with patients, a decreasing trend of the error trajectory was found together with an increasing trend in the task performance as the movement was repeated. Brain injury patients expressed a great acceptance in using the system as a rehabilitation tool. [Conclusions]: The study demonstrates the technical feasibility of using the hybrid robotic system for reaching rehabilitation. Patients’ reports on the received intervention reveal a great satisfaction and acceptance of the hybrid robotic system.This work was supported by the Spanish Ministry of Economy and Competitiveness by the project ASSOCIATE (agreement: DPI2014–58431-C4–1-R) and the HYPERNET network (agreement: DPI2015–71676-REDC)

    A subject-specific kinematic model to predict human motion in exoskeleton-assisted gait

    Get PDF
    The relative motion between human and exoskeleton is a crucial factor that has remarkable consequences on the efficiency, reliability and safety of human-robot interaction. Unfortunately, its quantitative assessment has been largely overlooked in the literature. Here, we present a methodology that allows predicting the motion of the human joints from the knowledge of the angular motion of the exoskeleton frame. Our method combines a subject-specific skeletal model with a kinematic model of a lower limb exoskeleton (H2, Technaid), imposing specific kinematic constraints between them. To calibrate the model and validate its ability to predict the relative motion in a subject-specific way, we performed experiments on seven healthy subjects during treadmill walking tasks. We demonstrate a prediction accuracy lower than 3.5◦ globally, and around 1.5◦ at the hip level, which represent an improvement up to 66% compared to the traditional approach assuming no relative motion between the user and the exoskeleton

    A subject-specific kinematic model to predict human motion in exoskeleton-assisted gait

    Get PDF
    The relative motion between human and exoskeleton is a crucial factor that has remarkable consequences on the efficiency, reliability and safety of human-robot interaction. Unfortunately, its quantitative assessment has been largely overlooked in the literature. Here, we present a methodology that allows predicting the motion of the human joints from the knowledge of the angular motion of the exoskeleton frame. Our method combines a subject-specific skeletal model with a kinematic model of a lower limb exoskeleton (H2, Technaid), imposing specific kinematic constraints between them. To calibrate the model and validate its ability to predict the relative motion in a subject-specific way, we performed experiments on seven healthy subjects during treadmill walking tasks. We demonstrate a prediction accuracy lower than 3.5◦ globally, and around 1.5◦ at the hip level, which represent an improvement up to 66% compared to the traditional approach assuming no relative motion between the user and the exoskeleton
    corecore