55,385 research outputs found

    R-matrix Approach to Quantum Superalgebras su_{q}(m|n)

    Full text link
    Quantum superalgebras suq(m∣n)su_{q}(m\mid n) are studied in the framework of RR-matrix formalism. Explicit parametrization of L(+)L^{(+)} and L(−)L^{(-)} matrices in terms of suq(m∣n)su_{q}(m\mid n) generators are presented. We also show that quantum deformation of nonsimple superalgebra su(n∣n)su(n\mid n) requires its extension to u(n∣n)u(n\mid n).Comment: 14 page

    A general method to determine the stability of compressible flows

    Get PDF
    Several problems were studied using two completely different approaches. The initial method was to use the standard linearized perturbation theory by finding the value of the individual small disturbance quantities based on the equations of motion. These were serially eliminated from the equations of motion to derive a single equation that governs the stability of fluid dynamic system. These equations could not be reduced unless the steady state variable depends only on one coordinate. The stability equation based on one dependent variable was found and was examined to determine the stability of a compressible swirling jet. The second method applied a Lagrangian approach to the problem. Since the equations developed were based on different assumptions, the condition of stability was compared only for the Rayleigh problem of a swirling flow, both examples reduce to the Rayleigh criterion. This technique allows including the viscous shear terms which is not possible in the first method. The same problem was then examined to see what effect shear has on stability

    The effect of barriers on wave propagation phenomena: With application for aircraft noise shielding

    Get PDF
    The frequency spectrum was divided into high and low frequency regimes and two separate methods were developed and applied to account for physical factors associated with flight conditions. For long wave propagation, the acoustic filed due to a point source near a solid obstacle was treated in terms of an inner region which where the fluid motion is essentially incompressible, and an outer region which is a linear acoustic field generated by hydrodynamic disturbances in the inner region. This method was applied to a case of a finite slotted plate modelled to represent a wing extended flap for both stationary and moving media. Ray acoustics, the Kirchhoff integral formulation, and the stationary phase approximation were combined to study short wave length propagation in many limiting cases as well as in the case of a semi-infinite plate in a uniform flow velocity with a point source above the plate and embedded in a different flow velocity to simulate an engine exhaust jet stream surrounding the source

    Effects of viscosity and external constraints on wave transmission in blood vessels

    Get PDF
    Viscosity and external constraints studied for effects on wave transmission in blood vessel

    Origin of spin reorientation transitions in antiferromagnetic MnPt-based alloys

    Get PDF
    Antiferromagnetic MnPt exhibits a spin reorientation transition (SRT) as a function of temperature, and off-stoichiometric Mn-Pt alloys also display SRTs as a function of concentration. The magnetocrystalline anisotropy in these alloys is studied using first-principles calculations based on the coherent potential approximation and the disordered local moment method. The anisotropy is fairly small and sensitive to the variations in composition and temperature due to the cancellation of large contributions from different parts of the Brillouin zone. Concentration and temperature-driven SRTs are found in reasonable agreement with experimental data. Contributions from specific band-structure features are identified and used to explain the origin of the SRTs.Comment: 6 pages, 8 figure
    • …
    corecore