40 research outputs found

    Synthesis, properties and water permeability of SWNT buckypapers

    Get PDF
    The ability of macrocyclic ligands to facilitate formation of dispersions of single-walled carbon nanotubes (SWNTs) was investigated using a combination of absorption spectrophotometry and optical microscopy. Vacuum filtration of aqueous dispersions containing SWNTs and various macrocyclic ligands (derivatised porphyrin, phthalocyanine, cyclodextrin and calixarene) afforded self-supporting membranes known as buckypapers. Microanalytical data and energy dispersive X-ray spectra were obtained for these buckypapers and provided evidence for retention of the macrocyclic ligands within the structure of the membranes. The electrical conductivities of the membranes varied between 30 ± 20 and 220 ± 60 S cm−1, while contact angle analysis revealed they all possessed hydrophilic surfaces. The mechanical properties of buckypapers prepared using macrocyclic ligands as dispersants were shown to be comparable to that of a benchmark material prepared using the surfactant Triton X-100 (Trix). Incorporation of the macrocyclic ligands into SWNT buckypapers was found to increase their permeability up to ten-fold compared to buckypapers prepared using Trix. No correlation was observed between the water permeability of the membranes and the average size of either their surface or internal pores. However, the water permeability of the membranes was found to be inversely dependent on their surface area

    Synthesis, properties and water permeability of SWNT buckypapers

    Get PDF
    The ability of macrocyclic ligands to facilitate formation of dispersions of single-walled carbon nanotubes (SWNTs) was investigated using a combination of absorption spectrophotometry and optical microscopy. Vacuum filtration of aqueous dispersions containing SWNTs and various macrocyclic ligands (derivatised porphyrin, phthalocyanine, cyclodextrin and calixarene) afforded self-supporting membranes known as buckypapers. Microanalytical data and energy dispersive X-ray spectra were obtained for these buckypapers and provided evidence for retention of the macrocyclic ligands within the structure of the membranes. The electrical conductivities of the membranes varied between 30 ± 20 and 220 ± 60 S cm−1, while contact angle analysis revealed they all possessed hydrophilic surfaces. The mechanical properties of buckypapers prepared using macrocyclic ligands as dispersants were shown to be comparable to that of a benchmark material prepared using the surfactant Triton X-100 (Trix). Incorporation of the macrocyclic ligands into SWNT buckypapers was found to increase their permeability up to ten-fold compared to buckypapers prepared using Trix. No correlation was observed between the water permeability of the membranes and the average size of either their surface or internal pores. However, the water permeability of the membranes was found to be inversely dependent on their surface area

    Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles

    Get PDF
    Release of membrane vesicles, a process conserved in both prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy

    Single and mixed phase TiO2 powders prepared by excess hydrolysis of titanium alkoxide

    No full text
    To investigate the excess hydrolysis of titanium alkoxides, TiO2 powders were fabricated from titanium tetraisopropoxide using 6 : 1 and 100 : 1 H2O/Ti (r) ratios. The powders were dried and fired at a range of temperatures ((800uC). Hydroxylation and organic content in powders were characterised using attenuated total reflectance Fourier transform infrared spectroscopy (FTIR), laser Raman microspectroscopy and elemental microanalysis; surface area and pore size distribution were evaluated using N2 gas adsorption; phase composition was analysed using Xray diffraction (XRD) and laser Raman microspectroscopy; and crystallite size was evaluated by XRD, TEM and SEM. Results showed near complete hydrolysis in a predominantly aqueous medium (r=100), resulting in precipitated crystalline powders exhibiting brookite and anatase,which begin to transform to rutile below 500uC. The powders precipitated in a predominantly organic medium (r=6) underwent partial hydrolysis, were highly porous and exhibited an amorphous structure, with the crystallisation of anatase occurring at 300C and the transformation to rutile beginning at 500–600C

    Candidate waste forms for immobilisation of waste chloride salt from pyroprocessing of spent nuclear fuel

    No full text
    Sodalite/glass bodies prepared by hot isostatic pressing (HIPing) at ∼850 °C/100 MPa are candidates for immobilising fission product-bearing waste KCl–LiCl pyroprocessing salts. To study the capacity of sodalite to structurally incorporate such pyroprocessing salts, K, Li, Cs, Sr, Ba and La were individually targeted for substitution in a Na site in sodalite (Na vacancies targeted as charge compensators for alkaline and rare earths) and studied by X-ray diffraction and scanning electron microscopy after sintering in the range of 800–1000 °C. K and Li appeared to enter the sodalite, but Cs, Sr and Ba formed aluminosilicate phases and La formed an oxyapatite phase. However these non-sodalite phases have reasonable resistance to water leaching

    Biringuccio, Vannoccio

    No full text
    corecore